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A scaling Monte Carlo method has been developed to calculate diffuse reflectance from multilayered media
with a wide range of optical properties in the ultraviolet–visible wavelength range. This multilayered scaling
method employs the photon trajectory information generated from a single baseline Monte Carlo simulation of
a homogeneous medium to scale the exit distance and exit weight of photons for a new set of optical properties
in the multilayered medium. The scaling method is particularly suited to simulating diffuse reflectance spectra
or creating a Monte Carlo database to extract optical properties of layered media, both of which are demon-
strated in this paper. Particularly, it was found that the root-mean-square error (RMSE) between scaled diffuse
reflectance, for which the anisotropy factor and refractive index in the baseline simulation were, respectively,
0.9 and 1.338, and independently simulated diffuse reflectance was less than or equal to 5% for source–detector
separations from 200 to 1500 !m when the anisotropy factor of the top layer in a two-layered epithelial tissue
model was varied from 0.8 to 0.99; in contrast, the RMSE was always less than 5% for all separations (from
0 to 1500 !m) when the anisotropy factor of the bottom layer was varied from 0.7 to 0.99. When the refractive
index of either layer in the two-layered tissue model was varied from 1.3 to 1.4, the RMSE was less than 10%.
The scaling method can reduce computation time by more than 2 orders of magnitude compared with inde-
pendent Monte Carlo simulations. © 2007 Optical Society of America

OCIS codes: 300.6540, 300.6550, 290.1350, 290.4210, 290.7050, 170.3660.

1. INTRODUCTION
Ultraviolet–visible (UV-VIS) diffuse reflectance spectros-
copy has been explored to detect precancers and cancers
in a variety of epithelial tissues.1–5 This nondestructive
technique has several attributes. First, diffuse reflectance
spectra contain a wealth of biochemical and structural in-
formation related to disease progression.6–9 Moreover,
broadband light sources, sensitive detectors, and compact
fiber-optic probes enable rapid and remote measurements
of diffuse reflectance from tissue surfaces and endoscopi-
cally accessible organ sites. In such applications, an accu-
rate model of light transport is essential to quantitatively
extract optical properties from measured diffuse reflec-
tance spectra. Diffusion theory and the modified versions
of this analytical model have been used to extract optical
properties and relevant biochemical and structural infor-
mation from diffuse reflectance measurements
previously.3–5,10 However, diffusion theory is not valid to
describe light propagation at small source–detector
separations11 and for the case where absorption and scat-
tering are comparable, such as diffuse reflectance mea-
surements in the UV-VIS spectral region. In these situa-
tions, the Monte Carlo method provides a flexible tool to
model light transport in turbid media. In addition, the ca-
pability of Monte Carlo modeling to simulate complex tis-
sue structures and fiber-optic geometries has made it very
attractive as a model of light transport. However, the
main drawback of the Monte Carlo method is the require-
ment of intensive computation to achieve results with de-

sirable variance, which makes it extremely time consum-
ing compared with analytical models such as diffusion
theory.

There has been a lot of work previously to improve the
efficiency of the Monte Carlo method for modeling light
transport in turbid media. Several publications have dem-
onstrated the use of improved Monte Carlo methods, or
simply Monte Carlo databases created beforehand with
conventional Monte Carlo modeling, to estimate the opti-
cal properties of the tissue from given diffuse reflectance
data in the spatial,12,13 time,14 or frequency domains3,15

and/or as a function of wavelength.2 The methods pro-
posed to increase the efficiency of Monte Carlo modeling
can be broadly separated into two groups: the methods ac-
celerating a single Monte Carlo simulation16–18 and the
methods taking advantage of information generated by a
small set of Monte Carlo baseline simulations for a wide
range of optical properties.14,15,19–23

The first set of methods16–18 can accelerate a single
Monte Carlo simulation to achieve desirable variance in
simulated results. For example, the geometry-splitting
technique can increase the fraction of useful photons for a
specific fiber-optic probe geometry, thus reducing the total
number of incident photons needed to minimize the vari-
ance of simulated diffuse reflectance.16,17 Tinet et al.18

proposed a semianalytical Monte Carlo method for time-
resolved light propagation. Each random-walk step of a
photon contributes deterministically to a detector area,
thus dramatically improving the variance of detected sig-
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nals especially when the goal is to simulate rarely occur-
ring events.

The second set of methods14,15,19–23 takes the informa-
tion collected from a single baseline simulation or a small
set of baseline simulations and uses them to generate dif-
fuse reflectance or transmittance for a wide range of opti-
cal properties. For example, the reciprocity theorem has
been employed to reduce the number of Monte Carlo
simulations for fluorescence propagation in layered
media.23 The perturbation Monte Carlo method records
the trajectory information for each individual detected
photon in a baseline simulation and adjusts the exit
weight of the photons for small changes of optical proper-
ties in layered media15 or for the perturbation of small
heterogeneities present in a homogeneous medium22 ac-
cording to proper differential operators. However, the ac-
curacy of the perturbation method is sensitive to changes
in the scattering coefficient,15,22 thus limiting the appli-
cable range of the data generated from a single baseline
simulation. The scaling method is another powerful ap-
proach that requires photon trajectory information from a
baseline simulation. Battistelli et al.19 proposed two scal-
ing relations for calculation of transmittance in a Monte
Carlo simulation. Graaff et al.20 took advantage of the fact
that the step sizes of random walk in a Monte Carlo simu-
lation are linearly related to the inverse of the transport
coefficient (sum of absorption and scattering coefficients)
and developed two very useful scaling relations, one of
which relates the exit distance of a photon to the trans-
port coefficient of a homogeneous medium and the other
relates the exit weight to the albedo. Kienle and
Patterson14 created a Monte Carlo database for the esti-
mation of optical properties of a homogeneous medium
from given time-resolved reflectance by using the rela-
tions proposed by Graaff et al.20 to account for the change
in the scattering coefficient and using Beer’s law to ac-
count for the absorption coefficient. Palmer and
Ramanujam21 developed a scaling Monte Carlo method to
extract optical properties from diffuse reflectance spectra
of a homogeneous medium in the UV-VIS spectral region.
Again, the scaling approach by Graaff et al.20 was used
such that only a single Monte Carlo simulation was
needed for a particular fiber-optic probe geometry. Unfor-
tunately, none of these studies addresses the need for a
method that can implement fast Monte Carlo simulations
of diffuse reflectance from multilayered turbid media.

Our group has extended the capabilities of the scalable
Monte Carlo model developed by Palmer and
Ramanujam21 to sequentially estimate the optical proper-
ties of a two-layered squamous epithelial tissue model.16

In the second step of this sequential estimation method, a
database that contains diffuse reflectance data simulated
from the two-layered tissue model for a wide range of op-
tical properties was required prior to the inversion pro-
cess to estimate the optical properties of the bottom layer
(assuming that the optical properties of the top layer have
been obtained in the first step). To reduce the number of
required independent simulations, a strategy called white
Monte Carlo simulation was used.14,23 Several Monte
Carlo simulations were run with zero absorption and
various scattering coefficients, and the path lengths of de-
tected photons were recorded. The effect of absorption

was incorporated postsimulation according to Beer’s law.
Although this strategy reduced the total number of simu-
lations by roughly 3 orders of magnitude, it still required
a significant number of independent simulations (a total
of 819 simulations, each with 106 incident photons),
which took about four weeks to complete on a cluster of
Sun UNIX computers equipped with the CONDOR distrib-
uted computing software.24

This paper describes a multilayered scaling method
that enables implementation of fast Monte Carlo simula-
tions of diffuse reflectance from multilayered turbid me-
dia. This method requires photon trajectory information
provided by only a single baseline simulation, from which
the diffuse reflectance can be computed for a wide range
of optical properties in a multilayered turbid medium. A
convolution scheme is also incorporated to calculate dif-
fuse reflectance for specific fiber-optic probe geometries.
The multilayered scaling approach for computing diffuse
reflectance was demonstrated for a two-layered and a
three-layered epithelial tissue model and validated by
quantitatively comparing scaled results with diffuse re-
flectance obtained from independent Monte Carlo simula-
tions. In addition, a diffuse reflectance spectrum simu-
lated from the two-layered tissue model for a source–
detector separation of 1500 !m was used as the input to
the sequential estimation method16 described previously
to evaluate the errors in retrieving the optical properties
of the bottom layer and the thickness of the top layer of
the tissue model where a Monte Carlo database created
by the multilayered scaling method was employed in the
inversion (assuming that the optical properties of the top
layer are known).

2. METHODS
A. Principle of the Multilayered Scaling Method
In principle, the multilayered scaling method is similar to
the scaling method for a homogeneous medium as de-
scribed by Graaff et al.20 For the purpose of comparison,
Fig. 1(a) illustrates the scaling method as applied to a ho-
mogeneous medium. The solid lines with arrows repre-
sent the trajectory of a photon in a baseline medium, and
the dashed lines with arrows are the scaled trajectory for
a new medium where the transport coefficient !!t" is half
of the baseline value. When !t decreases by one half, the
mean free path of the photon, which is the reciprocal of !t,
increases by a factor of 2. Subsequently, the exit location
of the photon after scaling is displaced from the incident
location by a factor of 2 relative to the original exit loca-
tion if every step of the random walk is sampled with ex-
actly the same random numbers as in the baseline simu-
lation.

The above procedure can be mathematically formulated
as follows. Some key notations are defined first. The
transport coefficient denoted by !t is the sum of the ab-
sorption !!a" and scattering !!s" coefficients. The albedo is
denoted by ", and "=!s /!t. Assume the transport coeffi-
cient in the baseline medium is !t0 and the albedo is "0.
The number of collisions that a photon experiences before
exit is N, and the photon escapes from the top surface of
the medium at a distance of r0 from the incident location
(which will be called the exit distance from now on). Then
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the photon weight upon exit is w0="0
N. For a new set of

optical properties where the transport coefficient is !t and
the albedo is ", the scaled exit distance is r=r0#!t0 /!t,
and the exit weight is w="N=w0# !" /"0"N.

Figure 1(b) illustrates the scaling method as applied to
a two-layered medium. Again, the solid lines with arrows
are the trajectory of a photon in a baseline homogeneous
medium with a transport coefficient of !t0, and the
dashed lines are the scaled trajectories in a two-layered
medium. In this example, the top layer !t is twice !t0, the
bottom layer !t is half of !t0, and the top-layer thickness
is d1 (the dashed horizontal line indicates the layer inter-
face between the top and the bottom layers in the two-
layered medium). The first step in the scaling process is to
find the corresponding location of the layer interface in
the baseline medium. Because the top layer !t is twice
!t0, the mean free path in the top layer is half of that in
the baseline medium. Therefore the top-layer thickness
should be doubled to obtain the corresponding location of
the layer interface in the baseline medium, i.e., d1!=2d1.
Thus, the baseline medium can be viewed as a pseudo-
two-layered medium with a pseudolayer interface at
depth d1!=2d1. The random-walk steps of the photon in
the baseline medium can then be separated into two
groups according to their location relative to the
pseudolayer interface in the baseline medium. Any steps
that are within the pseudo top layer (depth smaller than
d1!) are scaled according to the optical properties of the top
layer in the two-layered medium. Similarly, the steps that
are within the pseudo bottom layer (depth larger than d1!)
in the baseline medium are scaled according to the optical
properties of the bottom layer in the two-layered medium.
In this specific situation, all photon steps in the top layer
are cut short by half, and all photon steps in the bottom
layer are stretched by a factor of 2. The exit distance of
the photon is the vector sum of the scaled steps in the
horizontal dimension (in the plane parallel to the medium
top surface where diffuse reflectance is measured) as
shown in Fig. 1(b).

Similar to the previous procedure for homogeneous
scaling, the above procedure for multilayered scaling can

be mathematically formulated as follows. Assume the
transport coefficient in the baseline medium is !t0, the al-
bedo is "0, and the exit weight of a specific photon is w0. It
is further assumed that the multilayered medium has a
total of n layers and the transport coefficient of the first
layer in the medium is !t1, that of the second layer is
!t2 , . . ., and that of the nth layer is !tn. Similarly, the al-
bedo for each layer is "1 ,"2 , . . . ,"n, and the thickness of
each layer is d1 ,d2 , . . . ,dn. For every photon that exits
from the top surface of the baseline medium, do the fol-
lowing:

I. Determine the corresponding locations of all the
layer interfaces in the baseline medium. This step needs
to be done only once for all photons. The thicknesses of
these pseudolayers can be obtained by the following scal-
ing operations:

d1! = d1 # !t1/!t0,

d2! = d2 # !t2/!t0,

¯

dn! = dn # !tn/!t0.

II. Determine the number of collisions that the photon
experienced, Ni, and the horizontal offset that the photon
traveled, ri, in each pseudolayer before exit based on the
trajectory information from the baseline simulation !i
=1,2, . . .n".

III. Scale the horizontal offset in each pseudolayer ac-
cording to the transport coefficient of the corresponding
real layer, and take the vector sum of the horizontal off-
sets in all layers, which yields the scaled exit distance

r = #
i=1

n

!ri # !t0/!ti",

where ri is the horizontal offset recorded in the ith
pseudolayer.

Fig. 1. Principle of the scaling method as applied in (a) a homogeneous medium and (b) a two-layered medium. In both (a) and (b), the
horizontal bold line is the air–medium interface, the solid lines with arrows represent the trajectory of a photon in a baseline medium,
and the dashed lines with arrows represent the scaled trajectory of the same photon in a new medium with a different set of optical
properties. The incident locations of the two trajectories were supposed to overlap, but they were purposefully shifted away from each
other in the above figures for better differentiation. The baseline transport coefficient !!t" is !t0 in both (a) and (b). For homogeneous
scaling in (a), it is assumed that the new !t is half of !t0. For the layered scaling in (b), it is assumed that the !t of the top layer is twice
!t0 and the !t of the bottom layer is half of !t0. In (b), the horizontal dashed line in the middle stands for the layer interface in the
two-layered medium, while the horizontal solid line in the bottom represents the corresponding location of the layer interface in the
baseline medium as if the baseline medium were two-layered with a pseudolayer interface.
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IV. Calculate the weight change in each pseudolayer ac-
cording to the albedo of each real layer and the number of
collisions in each pseudolayer, and take the product of all
the weight change terms, which yields the scaled exit
weight:

w = $
i=1

n

!"i/"0"Ni # w0,

where Ni is the number of collisions in each pseudolayer
and w0 is the exit weight in the baseline simulation.

It should be pointed out that the horizontal offsets refer
to either the x or the y dimension in a Cartesian coordi-
nate system. To obtain the radial offsets, the offsets in the
x and y dimensions should be scaled separately and then
recombined in the end. Therefore, both x and y offsets are
needed for scaling in a three-dimensional light transport
model. In addition, when one random-walk step crosses
two or more pseudolayers, the horizontal offset corre-
sponding to this step should be distributed to all relevant
layers according to the path length of the photon in each
pseudolayer. For simplicity, it is assumed that the base-
line homogeneous medium and the bottom layer of the
multilayered medium are semi-infinite in the axial di-
mension and infinite in the lateral dimension.

B. Monte Carlo Baseline Simulation for Multilayered
Scaling and Scaling Operation
A three-dimensional, weighted-photon Monte Carlo code
written with standard American National Standards In-
stitute (ANSI) C programming language25,26 was modified
to create a photon trajectory database for scaling. A single
simulation was run for a homogeneous baseline medium,
in which !a=0 cm−1, !s=100 cm−1, and the anisotropy
factor g=0.9. The Henyey–Greenstein (HG) phase func-
tion was used for sampling scattering angles in the simu-
lation. The refractive index of the medium above the base-
line medium, the refractive index of the baseline medium,
and the refractive index of the medium below the baseline
medium were set at 1.462, 1.338, and 1.338, respectively.
These two values represent the refractive indices of glass
and water at 500 nm.27,28 The thickness of the medium
was set at 5 cm to simulate a semi-infinite medium. A to-
tal of 4#106 photons was launched at the origin of a Car-
tesian coordinate system to obtain the impulse response
of the baseline medium in diffuse reflectance. The Carte-
sian coordinate system was set up such that the axial di-
mension, which is perpendicular to the top surface of the
baseline medium, corresponds to the z axis, and the x–y
plane is parallel to the top surface of the baseline me-
dium. The angular profile of incident photons (relative to
the z axis) followed a Gaussian distribution with a cutoff
angle defined by a numerical aperture (NA) of 0.22 to
simulate an optical fiber. The axial dimension of the base-
line medium was empirically divided into 51 depth inter-
vals with variable interval widths to record photon trajec-
tory information. The interval width was progressively
increased with depth because the likelihood of photon
visitations decreases with depth. The actual depth inter-
val width was assigned as follows: 50 !m for depths from
0 to 0.1 cm, 100 !m for depths from 0.105 to 0.475 cm,

350 !m for a depth of 0.485 cm, 500 !m for depths from
0.52 to 0.92 cm, 800 !m for a depth of 0.97 cm, and
1000 !m for depths from 1.05 to 1.85 cm. All depths be-
yond 1.95 cm are assigned to the last depth interval.
When a photon exits at an angle relative to the z axis
smaller than the cutoff angle defined by an NA of 0.22,
the relevant trajectory information of this photon, which
includes the exit weight, the x and y offsets, and the num-
ber of collisions of the photon within each depth interval,
is stored in a numerical array. Approximately 1.2#105

photons were detected on the top surface of the baseline
medium, and a memory space of 160 MBytes was needed
to store the trajectory data.

Because the depth intervals have finite width, the
pseudolayer interfaces in the baseline medium, whose lo-
cations are obtained by scaling the depth of the layer in-
terfaces in the multilayered medium, can be located
within a depth interval rather than exactly at a boundary
between two adjacent intervals. In this case, all the x and
y offsets as well as the number of collisions corresponding
to this interval need to be distributed between the two
relevant pseudolayers. The contribution to each layer is
linearly proportional to the fraction of the interval width
within that layer.

After the impulse response of the multilayered medium
in diffuse reflectance is obtained by using the scaling
method, the diffuse reflectance for a specific fiber-optic
source–detector geometry can be calculated by convolving
the impulse response with the beam profile.21,25 All the
scaling operations were coded and run in MATLAB 6 (Math-
Works, Incorporated, Natick, Massachusetts).

C. Theoretical Tissue Models and Specific Fiber-Optic
Probe Geometries
The scaling method was tested on a two-layered model
and a three-layered model of human squamous epithelial
tissue. The corresponding diffuse reflectance from the two
epithelial tissue models was also independently simu-
lated with a Monte Carlo code26 for comparison with the
scaled diffuse reflectance. The HG function was used in
the independent simulations except when the effect of the
phase function was studied (Fig. 7 and Tables 4 and 8 be-
low).

Figure 2 shows the schematics of the two epithelial tis-
sue models. In Fig. 2(a), the top-layer thickness d1 is
500 !m, and the bottom-layer thickness d2 is 5 cm to
simulate a semi-infinite medium. In Fig. 2(b), the top-
layer thickness d3 is varied from 50 to 250 and to 450 !m
while the sum !d1" of the top-layer and the middle-layer
thicknesses is fixed at 500 !m. The middle layer in the
three-layered model is intended to simulate a sublayer of
neoplastic cells in the epithelial layer.

The optical properties of the tissue model are shown in
Fig. 3(a) for the top layer, in Fig. 3(b) for the bottom layer,
and in Fig. 3(c) for the middle layer. The optical proper-
ties of the top and bottom layers are exactly the same as
those in a previous publication16 from our group to facili-
tate comparison of the accuracy of optical property esti-
mation later using the multilayered scaling method with
the accuracy using the previously developed sequential
estimation method.16 The ranges of optical properties
were chosen to represent those of human cervical tissue.29
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The absorption coefficients of the middle layer are identi-
cal to those of the top layer, while the scattering coeffi-
cients of the middle layer are twice those of the top layer
to approximate a precancerous layer.7 Absorption and
scattering were assumed to be contributed, respectively,
by Nigrosin at known concentrations and polystyrene
spheres with a diameter of 1.053 !m and a volume con-
centration of 0.256%. Mie theory30 was used to calculate
the scattering properties of the polystyrene spheres. The
refractive indices of the spheres and water were assumed
to be 1.6 and 1.3352, respectively, in the calculation.

The refractive index of the medium above the tissue
models, the refractive index of the tissue models, and the
refractive index of the medium below the tissue models
were 1.462, 1.338 and 1.338, respectively. The value of g
was 0.9 unless specified otherwise. These parameters are
maintained equal to those in the baseline simulation for
scaling as described in the previous subsection to achieve
“ideal conditions” for evaluation of scaled reflectance in
Subsection 3.A. They will be varied to examine the valid
range of scaled reflectance in Subsection 3.B. The diam-
eter of both source and detector fibers was 200 !m, and
the NA was fixed at 0.22 for these simulations. The
center-to-center distance between the source and the de-
tector fibers was varied from 0 to 2000 !m with a uni-
form increment of 200 !m.

3. RESULTS
A. Accuracy of Scaled Reflectance Relative to
Independently Simulated Reflectance under Ideal
Conditions
To test the accuracy of scaled diffuse reflectance under
ideal conditions, the reflectance was independently simu-
lated on the original two-layered epithelial model, in
which the same anisotropy factor, refractive indices, and
phase function as used in the baseline simulation were
employed. Each independent simulation was run six
times. The percent deviation between scaled and simu-
lated results at each individual wavelength was calcu-
lated as follows to quantify the accuracy of the scaled re-
sults and is shown in Figs. 4 and 5:

Percent Deviation =
Scaled-Simulated

Simulated
# 100, !1"

where “Scaled” represents the scaled reflectance value
and “Simulated” represents the mean of simulated reflec-

Fig. 2. Schematics of two-layered and three-layered epithelial tissue models for testing the accuracy of the multilayered scaling method.
The optical properties of the top layer are shown in Fig. 3(a), the optical properties of the bottom layer are shown in Fig. 3(b), and the
optical properties of the middle layer are shown in Fig. 3(c). It should be noted that the thicknesses of the top layer and the middle layer
in (b) add up to the thickness of the top layer in (a).

Fig. 3. Absorption and reduced scattering coefficients of the (a)
top layer, (b) bottom layer, and (c) middle layer at a range of
wavelengths from 360 to 660 nm in a two-layered and a three-
layered theoretical epithelial tissue model.
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tance values from six runs of the independent simulation
on the same tissue model. The percent deviations of six
simulated reflectance values relative to their mean were
also calculated in the same manner. The 95% confidence
interval (CI) of the percent deviations of simulated reflec-
tance relative to their expected value was then estimated
as follows:

95 % CI = !mean − 1.96 # std/%m, mean + 1.96 # std/%m",
!2"

where m is the number of simulation runs !m=6" and
“mean” and “std” refer to the mean and standard devia-
tion of the calculated percent deviations. It should be
pointed out that the mean of the percent deviations is al-
ways zero and the 95% CI gives the range of the true per-
cent deviation with a p-value of 0.05.

Figure 4 shows scaled diffuse reflectance and indepen-
dently simulated diffuse reflectance as a function of
source–detector separation at a single wavelength
!500 nm" for the original two-layered epithelial tissue
model under ideal conditions, where the only source of er-
ror besides statistical uncertainty is the scaling opera-
tion. The two sets of symbols completely overlap at almost
all separations, which indicates excellent agreement be-
tween simulated and scaled reflectance values. The inset
graph shows the percent deviation of scaled reflectance
calculated according to Eq. (1). The 95% CIs of the per-
cent deviations of simulated reflectance relative to their
expected value are indicated by the error bars. All the per-
cent deviations of the scaled reflectance are less than 4%;
moreover, they are all close to or within the 95% CIs of
the percent deviations of simulated reflectance values. On
the one hand, small percent deviations of scaled reflec-
tance relative to simulated reflectance are indicative of

the validity of the multilayered scaling method. On the
other hand, the observation that some data points repre-
senting the percent deviations of scaled reflectance are
out of the 95% CI of percent deviations of simulated re-
flectance suggests that the scaling method may contain
errors caused by factors other than statistical uncer-
tainty, which will be discussed in Section 4.

Figure 5(a) shows the simulated and scaled diffuse re-
flectance as a function of wavelength for four representa-
tive separations, which are 0, 200, 800, and 1500 !m, and
Fig. 5(b) shows the percent deviation between scaled and
simulated reflectance as a function of wavelength for the
original two-layered epithelial model. It should be pointed
out that a separation of 0 !m is the case in which a single
fiber is used for both illumination and collection; a sepa-
ration of 200 !m is the case in which source and detector

Fig. 4. Diffuse reflectance as a function of the source–detector
separation at a single wavelength !500 nm" for the original two-
layered epithelial tissue model. The star symbols in the inset are
the percent deviations of the scaled reflectance value relative to
the mean of six independently simulated reflectance values as
calculated in Eq. (1) for each separation. The open circles in the
inset represent zero percent deviation. The error bar indicates
95% confidence interval (CI) of the percent deviation of simulated
reflectance values relative to its expected value, which was cal-
culated according to Eq. (2).

Fig. 5. (a) Simulated and scaled diffuse reflectance and (b) per-
cent deviation of scaled reflectance relative to simulated reflec-
tance [calculated according to Eq. (1)] as a function of wave-
length at four separations (0, 200, 800, and 1500 !m in the order
from the top to the bottom) for the original two-layered epithelial
tissue model. The 95% CI of the percent deviation of simulated
reflectance relative to its expected value was calculated accord-
ing to Eq. (2) and illustrated by the error bars in (b). The open
circles in (b) are the mean of the percent deviation of simulated
reflectance relative to its expected value, which is always zero be-
cause the expected value was estimated by the mean of simu-
lated reflectance.
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fibers are placed side by side; a separation of 1500 !m
represents a case in which source and detector fibers are
placed far away from each other; and a separation of
800 !m is the case in between a small separation !0 !m"
and a large separation !1500 !m".

In Fig. 5(a), the line shapes across four separations are
similar because there was only one absorber present in
the two-layered tissue model. The magnitude of reflec-
tance decreases as the separation increases. The two sets
of symbols representing scaled and simulated reflectance
overlap completely when the separation is 800 or
1500 !m. The agreement is slightly worse when the sepa-
ration is 0 or 200 !m.

In Fig. 5(b), the percent deviation of the scaled reflec-
tance relative to the mean of simulated reflectance and
95% CIs of the percent deviation of simulated reflectance
from its mean are shown for comparison. The percent
deviation between scaled and simulated reflectance is al-
most always outside of the 95% CI of the percent devia-
tion of simulated reflectance and distributed monotoni-
cally on the positive side of the zero-deviation line when
the separation is 0 or 200 !m. In contrast, over half of the
percent deviations between scaled and simulated reflec-
tance are within the 95% CI of the percent deviation of
simulated reflectance and distributed evenly on the posi-
tive and negative sides of the zero-deviation line when the
separation is 800 or 1500 !m. This finding suggests that
the scaling method is better for larger source–detector
separations than for smaller separations.

B. Effect of Various Model Parameters on Percent
Deviation of Scaled Diffuse Reflectance Relative to
Simulated Diffuse Reflectance
Several parameters of the tissue models or probe geom-
etry could affect the valid range of scaled diffuse reflec-
tance when their values are different from those in the
baseline simulation. For example, the variation in the an-
isotropy or refractive index values of the tissue model at
different wavelengths can cause a change in diffuse re-
flectance even when the absorption and scattering coeffi-
cients are identical. If the multilayered scaling method,
for which only a single set of values can be chosen for
those parameters in the baseline simulation, is used to es-
timate optical properties for a range of wavelengths, such
differences in model parameters could cause significant
errors in the estimated optical properties. As the first step
to evaluate the validity of scaled reflectance, a series of
independent Monte Carlo simulations were run for sev-
eral modified two-layered epithelial tissue models, in each
of which one target parameter was varied over a certain
range that covers typically seen values, while other pa-
rameters in the tissue model and the probe geometry
were kept identical to those in the original two-layered
epithelial tissue model. Then the differences between
scaled reflectance and simulated reflectance were quanti-
tatively evaluated. The root-mean-square error (RMSE) of
scaled reflectance relative to independently simulated re-
flectance calculated over all wavelengths was used to
quantify the difference between the simulated and scaled
diffuse reflectance, which is defined as follows:

RMSE =%#
i=1

n &Scaledi-Simulatedi

Simulatedi
# 100'2

n
,

where n is the number of wavelengths !n=16" and Scaledi
and Simulatedi correspond to scaled results and simu-
lated results at the ith wavelength, respectively.

1. Anisotropy Factor
Table 1 shows the RMSE of the scaled reflectance values
for the original two-layered tissue model where the aniso-
tropy was 0.9, relative to independently simulated reflec-
tance for a modified two-layered epithelial tissue model.
The simulated reflectance values for the modified two-
layered tissue model were generated for the case where
the anisotropy factor of the top layer and bottom layer
was varied from 0.7 to 0.8 to 0.9 (this value was used in
the baseline simulation) to 0.99 to cover the range of com-
monly seen anisotropy values in biological tissues.31 It
needs to be pointed out that when the anisotropy was var-
ied in the modified tissue model the scattering coefficient
was also changed accordingly to maintain an identical re-
duced scattering coefficient, in order to test the validity of
the first-order similarity relation.32 All other parameters
in the modified and original tissue models remained iden-
tical.

For the top layer, it was found that the scaled reflec-
tance for a separation of 0 !m deviates from the simu-
lated reflectance most, which is consistent with the find-
ings from Fig. 5. The RMSEs for a source–detector
separation of 0 !m are significantly larger than those for
larger separations for anisotropies of 0.7, 0.8, and 0.99.
This suggests that the photons collected probably experi-
ence many fewer collisions at a separation of 0 !m than
at larger separations, thus requiring more precise aniso-
tropy values to obtain accurate diffuse reflectance values.
The RMSEs corresponding to g=0.9 are always the small-
est while those corresponding to g=0.7 are always the

Table 1. Effect of Anisotropy Factor of Tissue
Layer on RMSEa

Variable

RMSE (%)
for

Separation
=0 !m

RMSE (%)
for

Separation
=200 !m

RMSE (%)
for

Separation
=800 !m

RMSE (%)
for

Separation
=1500 !m

Top anisotropy
g=0.7 20.0 4.2 9.5 7.4
g=0.8 9.5 1.7 5.1 3.8
g=0.9 1.7 1.7 1.0 1.2
g=0.99 12.3 3.4 3.7 3.6

Bottom anisotropy
g=0.7 0.9 4.1 2.6 2.0
g=0.8 0.7 1.3 1.8 1.3
g=0.9 1.7 1.7 1.0 1.2
g=0.99 3.1 3.8 0.8 1.7

aRMSEs of scaled reflectance for the original two-layered tissue model relative to
independently simulated reflectance for a modified two-layered epithelial tissue
model where the anisotropy factor !g" of the top or bottom layer was varied while
other parameters of the modified tissue model were kept identical to those of the
original tissue model. Note that the anisotropy factor was 0.9 in the original tissue
model as shown in bold type.
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largest, which implies that the further the anisotropy in
an independent test simulation is from the baseline simu-
lation for scaling, the larger the deviation between the
scaled and simulated reflectance will be for all source–
detector separations. The RMSEs for the bottom layer are
generally smaller than those of the top layer for identical
anisotropy values, which suggests that the diffuse reflec-
tance is less affected by variation in the anisotropy of the
bottom layer. Moreover, there is no clear trend with sepa-
ration or anisotropy values in the RMSEs of the bottom
layer.

2. Refractive Index of the Tissue Layers
Table 2 shows the RMSEs of the scaled reflectance values
for the original two-layered epithelial tissue model where
the refractive index was 1.338, relative to independently
simulated reflectance for a modified two-layered epithe-
lial tissue model where the refractive index of the top
layer and the bottom layer was varied from 1.3 to 1.338
(the value used in the baseline simulation for scaling) to
1.4 and to 1.5 to cover the range of commonly seen refrac-
tive indices in biological tissues.33–36 All other parameters
in the modified and original tissue models were kept iden-
tical.

When the top-layer refractive index was varied, the
RMSE decreases in general as the source–detector sepa-
ration increases. The RMSEs corresponding to n=1.338
are always the smallest while those corresponding to n
=1.5 are always the largest, which suggests that the fur-
ther the refractive index in an independent test simula-
tion is from that in the baseline simulation, the larger the
deviation between the scaled and simulated reflectance
will be for all source–detector separations in this study.
When the bottom-layer refractive index was varied, the
most surprising finding is that the separation of 0 !m
was always the best case among all separations in terms
of the agreement between scaled and simulated reflec-
tance. The RMSEs for small separations (0 and 200 !m)
are generally smaller than those for the other two larger

separations (800 and 1500 !m) for all refractive indices
that are different from the baseline value. This suggests
that the refractive index of the bottom layer does not con-
siderably affect reflectance collected at small separations
but can significantly affect reflectance collected at large
separations, which is the opposite of the trend in the top
layer. Except for a separation of 0 !m, the RMSE in-
creases with the difference between the refractive index
of the bottom layer and that in the baseline simulation.

3. Refractive Index of the Medium above the Tissue
Model
The medium above the tissue model could be air, water, or
synthetic fused silica (the material that glass fibers are
usually made of) in a simulation. Figure 6 shows simu-
lated and scaled reflectance as a function of the source–
detector separation from a modified two-layered epithelial
tissue model at a single wavelength !500 nm", where the
refractive index of the medium above the tissue model
was varied from 1.0 (air) to 1.338 (water) to 1.462 (syn-
thetic fused silica) and to 1.6 (the upper limit of synthetic
fused silica in the UV region).28 The other parameters
were kept identical to those of the original two-layered
epithelial tissue model. The symbols corresponding to
various refractive indices completely overlap. The inset
figure, which gives the percent deviation of scaled reflec-
tance relative to simulated reflectance, confirms that the
difference between simulated and scaled reflectance is
smaller than 3% except for a separation of 2000 !m. This
suggests that the effect of the refractive index of the me-
dium on top of the tissue model on detected diffuse reflec-
tance is negligible compared with other variables that
have been studied for separations smaller than 2000 !m.
When the separation is equal to or larger than 2000 !m,
the small number of photons collected by the detector fi-

Table 2. Effect of Refractive Index of Tissue Layer
on RMSEa

Variable

RMSE (%)
for

Separation
=0 !m

RMSE (%)
for

Separation
=200 !m

RMSE (%)
for

Separation
=800 !m

RMSE (%)
for

Separation
=1500 !m

Top refractive index
n=1.3 2.9 1.6 1.1 1.0
n=1.338 1.7 1.7 1.0 1.2
n=1.4 8.4 5.8 3.1 3.5
n=1.5 17.0 10.2 6.5 6.3

Bottom refractive index
n=1.3 0.9 1.3 3.6 4.7
n=1.338 1.7 1.7 1.0 1.2
n=1.4 2.5 5.1 8.2 8.1
n=1.5 1.2 6.8 20.2 19.6

aRMSEs of scaled reflectance for the original two-layered tissue model relative to
independently simulated reflectance for a modified two-layered epithelial tissue
model where the refractive index of the top or bottom layer was varied while other
parameters of the modified two-layered epithelial tissue model were kept identical to
those of the original two-layered epithelial tissue model. Note that the refractive in-
dex was 1.338 in the original tissue model as shown in bold type.

Fig. 6. Simulated reflectance as a function of separation from a
modified two-layered epithelial tissue model at a wavelength of
500 nm, where the refractive index of the medium above the tis-
sue model was varied from 1.0 to 1.338 to 1.462 and to 1.6 and
other parameters were kept identical to those in the original two-
layered epithelial tissue model. The scaled reflectance as a func-
tion of separation is also shown, for which the refractive index of
the medium above the tissue model was 1.462 in the baseline
simulation. The inset graph shows the percent deviation of
scaled reflectance relative to simulated reflectance for different
refractive indices as a function of separation. The dashed line in
the inset represents zero percent deviation.
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ber may cause more significant statistical uncertainty,
and the effect of the refractive index of the medium above
the tissue model could become more important. The same
observation can be expected for other wavelengths as long
as the optical properties are within a similar range.

4. Refractive Index of the Fiber Core
The refractive index of the fiber core could be another un-
known in the simulation, which varies with wavelength
but may not be conveniently measured. Considering that
source and detector fiber tips usually occupy only a small
area on the top surface of the tissue, the effect of the fiber
core on those photons that hit the fiber core area and are
then reflected back into the tissue will be assumed to be
negligible during photon propagation in the tissue model.
Therefore, the problem will be simplified by considering
only photon launch from the source fiber end and photon
collection on the detector fiber end. On the source end, the
change in the refractive index of a fiber core can cause
variations in the fraction of specular reflectance. Table 3
lists the specular reflectance values calculated according
to Fresnel’s equation for (top half) 0° incidence and (bot-
tom half) cutoff angles defined by an NA of 0.22 for vari-
ous combinations of refractive indices of the fiber core
(commonly seen refractive index values of synthetic fused
silica28 in the UV-VIS spectral region) and the tissue
model. It can be seen that the change in specular reflec-
tance is negligible when the incident angle is varied from
0° to the cutoff angle defined by an NA of 0.22. In Table 3,
the greatest specular reflectance occurs when nfiber=1.6
and ntissue=1.3, in which case the specular reflectance is
around 1%, and this percentage is comparable with the
percent variation in diffuse reflectance due to statistical
uncertainty shown in Fig. 4. This small specular reflec-
tance suggests that the variations in the refractive index
of the fiber core do not cause significant variation in the
amount of light delivered into the tissue model for an NA
equal to or smaller than 0.22.

On the detector end, the cutoff acceptance angle de-
fined by an NA can be calculated by arcsin!NA/ntissue",
where ntissue refers to the refractive index of the tissue
model, which is independent of the refractive index of the
fiber core if the NA is fixed. Therefore the refractive index
of the fiber core has no impact on photon collection for a
fixed NA.

5. Phase Function
The Henyey–Greenstein (HG) phase function and the Mie
phase function are commonly used in Monte Carlo simu-
lations of light transport in tissue. Figure 7 shows the dif-
fuse reflectance simulated for the Mie phase function
used in both layers (calculated by Mie theory30 for the
polystyrene spheres in the theoretical phantom as in Sub-
section 2.C at 500 nm), the diffuse reflectance simulated
for the HG phase function with an anisotropy factor of
0.93 (equal to that of the Mie phase function) used in both
layers, and the scaled reflectance for the original two-
layered epithelial tissue model (the anisotropy factor was
fixed at 0.9). This graph demonstrates that the diffuse re-
flectance simulated with the Mie phase function is signifi-
cantly different from that simulated with the HG phase
function as well as from the scaled diffuse reflectance, es-
pecially for a separation of 0 !m (see the inset graph). As
the separation becomes larger, the percent deviation be-
tween the scaled reflectance and the diffuse reflectance
simulated with the Mie phase function fluctuates and as-
ymptotically approaches a small value, which implies
that the first-order similarity relation holds for large
separations. In contrast, the percent deviation between
the scaled reflectance and the diffuse reflectance simu-
lated with the HG phase function always oscillates
around zero.

Table 4 shows the RMSEs between scaled and simu-
lated (HG versus Mie) reflectance for all 16 wavelengths
for four representative separations. The diffuse reflec-
tance simulated with the Mie phase function demon-
strates considerably larger deviation compared with that
simulated with the HG phase function for all separations,
which suggests that the choice of the phase function is

Table 3. Effect of Refractive Indices of Fiber Core
and Tissue Model on Specular Reflectancea

nfiber (column)\ntissue (row) 1.3 1.4 1.5

0° incidence
1.4 0.0014 6.3#10−33 0.0012
1.5 0.0051 0.0012 0
1.6 0.011 0.0044 0.0010

Cutoff angles defined by NA 0.22
1.4 !$cutoff=9.0° " 0.0014 7.6#10−33 0.0012
1.5 !$cutoff=8.4° " 0.0051 0.0012 0
1.6 !$cutoff=7.9° " 0.011 0.0044 0.0010

aFraction of specular reflectance for various combinations of refractive indices of
the fiber core and the tissue model when !top half" the incident angle is 0° and !bot-
tom half" the cutoff angle !$cutoff" is defined by an NA of 0.22. nfiber represents the
refractive index of the fiber core, and ntissue is the refractive index of the tissue model.
The actual cutoff angles are also shown in the bottom half of the table.

Fig. 7. Simulated reflectance as a function of separation at a
wavelength of 500 nm for a modified two-layered epithelial tissue
model, in which the phase function was calculated from Mie
theory30 and other parameters including absorption and reduced
scattering coefficients were kept identical to the original two-
layered epithelial tissue model. The reflectance simulated for the
original two-layered epithelial tissue model and the scaled reflec-
tance, in which the HG phase function was used, are also shown
for comparison. The inset graph shows the percent deviation of
scaled reflectance relative to the two sets of simulated reflec-
tance. The dashed line in the inset represents zero deviation.
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critical when diffuse reflectance in the UV-VIS spectral
region for small source–detector separations is quantita-
tively modeled.

C. Effect of Three Layers and Layer Thickness on
Percent Deviation of Scaled Diffuse Reflectance Relative
to Simulated Diffuse Reflectance
The RMSEs of scaled reflectance relative to corresponding
independently simulated reflectance for a three-layered
tissue model with the top layer at various thicknesses,
whose structure and optical properties are shown, respec-
tively, in Figs. 2(b) and 3, are listed in Table 5. It should
be noted that the only difference between the three-
layered tissue model and the baseline simulation for scal-
ing is the number of layers and optical properties. The
purpose of this comparison is not only to test the validity
of the multilayered scaling method for a tissue model with
more layers but also to test whether a layer as thin as
50 !m in the tissue model, which is comparable with the
smallest depth interval width and the mean transport
free path in the baseline simulation, would cause a sig-
nificant deviation between scaled and simulated reflec-
tance.

It is observed that the RMSEs shown in Table 5 for the
three-layered tissue model are generally comparable to
those shown in Table 1 for the original two-layered tissue
model with g=0.9. Additionally, the RMSEs for the three-
layered tissue model with a 50 !m thick layer (when d3

=50 or 450 !m) are comparable to the RMSEs for the
three-layered tissue model with the thickness of all layers
significantly greater than 50 !m (when d3=250 !m),
which implies that a layer in a multilayered tissue model
whose thickness is comparable to the smallest depth in-
terval width and/or the mean transport free path in the
baseline simulation for scaling does not cause the devia-
tion between scaled diffuse reflectance and corresponding
simulated reflectance to be considerably larger than
thicker layers.

D. Effect of Anisotropy Factors, Refractive Indices, and
Phase Functions on the Accuracy of Optical
Property Estimation Using the Monte Carlo Reflectance
Database Obtained with the Multilayered Scaling
Method
The purpose of this part of the study was to examine how
the deviations in the scaled diffuse reflectance relative to
the independently simulated reflectance shown in Tables
1, 2, and 4 are propagated as errors in estimating the op-
tical properties of a multilayered medium. As described
previously,16 our group has developed an approach called
the sequential estimation approach to estimate the opti-
cal properties of a two-layered epithelial tissue-like me-
dium. The optical properties of the first layer are deter-
mined from diffuse reflectance spectra obtained with a
specialized angled probe geometry using a scalable Monte
Carlo model21 for a homogeneous medium. Then a second
Monte Carlo model is employed to estimate the bottom-
layer optical properties and the top-layer thickness from
diffuse reflectance spectra obtained with a standard flat-
tip fiber-optic probe geometry. In the previous publication,
a database that contains diffuse reflectance data obtained
by running multiple independent simulations from the
two-layered tissue model for a wide range of optical prop-
erties was required prior to the inversion process to esti-
mate the optical properties for the bottom layer. In the
simulation study described in this paper, the computa-
tionally intensive process of running multiple indepen-
dent simulations is replaced by using the multilayered
scaling method. In the process of implementing the inver-
sion, the optical properties of the top layer are assumed
as known. The deviation between estimated and true op-
tical properties for the wavelength range of interest was
represented by the RMSE.

Tables 6–8 list the RMSEs of estimated optical proper-
ties of the bottom layer and thickness of the top layer
relative to the corresponding true values for given simu-
lated diffuse reflectance spectra at a source–detector
separation of 1500 !m from the same modified two-
layered epithelial tissue models used in Tables 1, 2, and 4.
It can be seen in Tables 6–8 that the RMSEs in the case
where the anisotropies, refractive indices, and the phase
functions of the two-layered tissue model are identical to
those used in the baseline simulation are comparable
with those obtained previously using a Monte Carlo data-
base created with independently simulated data16 for the
same two-layered tissue model and probe geometry. Other
results will be discussed in the next section for concise-
ness.

Table 4. Effect of Phase Function on RMSEa

Variable

RMSE (%)
for

Separation
=0 !m

RMSE (%)
for

Separation
=200 !m

RMSE (%)
for

Separation
=800 !m

RMSE (%)
for

Separation
=1500 !m

HG 1.7 1.7 1.0 1.2
Mie 40.0 13.5 10.1 9.3

aRMSEs of scaled reflectance relative to independently simulated reflectance
from a modified two-layered epithelial tissue model in the case that the phase func-
tion was changed from the HG function to the Mie function while other parameters
of the modified two-layered epithelial tissue model were kept identical to those of the
original two-layered epithelial tissue model. Note that the HG phase function was
used in the baseline simulation for scaling.

Table 5. Effect of One Additional Layer and Layer
Thickness on RMSEa

Variable

RMSE (%)
for

Separation
=0 !m

RMSE (%)
for

Separation
=200 !m

RMSE (%)
for

Separation
=800 !m

RMSE (%)
for

Separation
=1500 !m

Top-layer thickness !!m"
d3=50 1.1 0.4 0.6 1.3

d3=250 1.7 1.4 0.5 2.8
d3=450 2.2 1.2 0.7 1.2

aRMSEs of scaled reflectance relative to corresponding independently simulated
reflectance for a three-layered epithelial tissue model, whose structure and optical
properties were, respectively, shown in Figs. 2!b" and 3. While the thickness of the
top layer !d3" was varied from 50 to 250 and to 450 !m, the thickness of the middle
layer was changed from 450 to 250 and to 50 !m accordingly to keep the total thick-
ness of the two layers a constant !500 !m". The anisotropy factor and refractive in-
dex of each layer as well as the choice of the phase function !HG" in the tissue model
were identical to those in the baseline simulation for scaling.
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4. DISCUSSION
A multilayered scaling method has been developed to
quickly calculate diffuse reflectance for a wide range of
optical properties based on a single baseline Monte Carlo
simulation. For example, a single Monte Carlo simulation
with 107 incident photons for the two-layered tissue
model shown in Fig. 2(a) took 1–2 h in a Sun Unix work-
station with a 1 GHz UltraSPARC-IIIi CPU and 1 GByte
RAM when the HG phase function was used. The baseline
simulation for scaling in this study was run with 4#106

incident photons, which took about 35 h on the same type
of computer. After the photon trajectory information was

obtained from the baseline simulation, it took about 4 s to
scale for the two-layered tissue model and 5 s for the
three-layered tissue model shown in Fig. 2. The multilay-
ered scaling method reduces the computation time by
more than 2 orders of magnitude compared with indepen-
dent Monte Carlo simulations. The multilayered scaling
method could be further optimized, for example by apply-
ing parallel computation, to achieve even faster computa-
tion than reported here. The multilayered scaling method
can also be easily extended to more complicated probe ge-
ometries, for example, a probe geometry with oblique il-
lumination and collection.16,37 Requiring only one base-
line simulation makes this method particularly suited to
simulating diffuse reflectance spectra in a multilayered
medium for a wide range of optical properties and for a
variety of different probe geometries and/or creating a
Monte Carlo database for estimating optical properties of
layered media, which can potentially help increase the
use of Monte Carlo modeling in spectroscopy research of
layered tissues.

The scaling relations used in this study could also play
a role in simplifying phantom fabrication. Figure 8(a)
shows a flat-tip fiber-optic probe geometry for diffuse re-
flectance measurement from a semi-infinite two-layered
epithelial tissue phantom, and Fig. 8(b) shows the scaled
version of the phantom and the probe geometry. The
physical dimensions of both the phantom and the fiber-
optic probe are scaled up by a factor of N while the trans-
port coefficients of the phantom are scaled down by the
same factor in the scaled version. It is straightforward to
see that the diffuse reflectance measured in Figs. 8(a) and
8(b) would be identical as can be inferred from the two
representative scaled trajectories, which has also been
confirmed by actual diffuse reflectance calculation for the
two phantoms using the multilayered scaling method (re-
sults not shown). One example of applications for the
scaled phantom is to replace a phantom whose top-layer
thickness d1 is very small with a scaled phantom whose
top layer is much thicker. By scaling up the dimensions of
the phantom and the probe as shown in Fig. 8(b), identi-
cal diffuse reflectance can be measured from the scaled
phantom in which the thickness of the top layer is N
times the original thickness and thus easier to make.
Similar ideas can be used to scale other parameters to
make them easier to achieve when the phantom with raw
parameters is not feasible to fabricate. It should be noted

Table 6. Effect of Anisotropy Factor of Tissue
Layer on RMSE of Estimated Optical Propertiesa

Variable
Thickness of

Top Layer !a!bottom !s!bottom!
RMSE (%)

%20%?

Top anisotropy
g=0.7 −12.7 10.5 45.2 Y
g=0.8 −11.5 9.6 15.5
g=0.9 9.6 9.5 5.9
g=0.99 −6.2 10.5 8.4

Bottom anisotropy
g=0.7 −9.0 8.3 12.8
g=0.8 −26.6 21.3 7.7 Y
g=0.9 9.6 9.5 5.9
g=0.99 −10.2 12.1 6.5

aRMSEs of the estimated thickness of the top layer and optical properties of the
bottom layer relative to the corresponding true values for given sets of simulated dif-
fuse reflectance spectra from the same modified two-layered epithelial tissue models
as in Table 1, where the anisotropy factor of the top or bottom layer was varied while
other parameters in the modified two-layered epithelial tissue models were kept iden-
tical to those in the original two-layered epithelial tissue model. The rows with bold
type are the RMSEs of estimated parameters for input diffuse reflectance simulated
with exactly the same anisotropy factor as in the baseline simulation for scaling. The
rightmost column in the table indicates if a row contains an RMSE greater than 20%
!marked by “Y”", which is a sign of inaccurate inversion.

Table 7. Effect of Refractive Index of Tissue Layer
on RMSE of Estimated Optical Propertiesa

Variable
Thickness of

Top Layer !a!bottom !s!bottom!
RMSE (%)

%20%?

Top refractive index
n=1.3 6.3 2.1 25.0 Y
n=1.338 9.6 9.5 5.9
n=1.4 −7.5 7.8 45.4 Y
n=1.5 −7.1 7.1 76.3 Y

Bottom refractive index
n=1.3 4.2 1.4 28.8 Y
n=1.338 9.6 9.5 5.9
n=1.4 −14.5 6.9 2.5
n=1.5 −11.6 6.0 14.3

aRMSEs of the estimated thickness of the top layer and optical properties of the
bottom layer relative to the corresponding true values for given sets of simulated dif-
fuse reflectance spectra from the same modified two-layered epithelial tissue models
as in Table 2, where the refractive index of the top or bottom layer was varied while
other parameters in the modified two-layered epithelial tissue models were kept iden-
tical to those in the original two-layered epithelial tissue model. The rows with bold
type are the RMSEs of estimated parameters for input diffuse reflectance simulated
with exactly the same refractive index as in the baseline simulation for scaling. The
rightmost column in the table indicates if a row contains an RMSE greater than 20%
!marked by “Y”", which is a sign of inaccurate inversion.

Table 8. Effect of Phase Function on RMSE of
Estimated Optical Propertiesa

Variable
Thickness of Top

Layer !a!bottom !s!bottom!
RMSE (%)

%20%?

HG 9.6 9.5 5.9
Mie −30 31.4 5.0 Y

aRMSEs of the estimated thickness of the top layer and optical properties of the
bottom layer relative to the corresponding true values for given sets of simulated dif-
fuse reflectance spectra from the same modified two-layered epithelial tissue models
as in Table 4, where the phase function was changed from the HG function to the Mie
function while other parameters in the modified two-layered epithelial tissue models
were kept identical to those in the original two-layered epithelial tissue model. The
rows with bold type are the RMSEs of estimated parameters for input diffuse reflec-
tance simulated with exactly the same phase function as in the baseline simulation
for scaling. The rightmost column in the table indicates if a row contains an RMSE
greater than 20% !marked by “Y”", which is a sign of inaccurate inversion.
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that when the same scatterer is used in the raw phantom
and in the scaled phantom, the variation in the dimension
of the phantom and the probe could cause a change in the
validity of a simplified phase function, e.g., using the HG
phase function with an identical anisotropy factor to re-
place the Mie phase function is not accurate for small
source–detector separations but is accurate for large
separations.

Although the difference between scaled and simulated
reflectance is small under ideal conditions as shown in
Figs. 4 and 5, the Fig. 4 inset and Fig. 5(b) demonstrate
that scaled reflectance is slightly out of the 95% CI of
simulated reflectance that is determined by the statistical
uncertainty. Besides the difference in the number of inci-
dent photons between test simulations and the baseline
simulation for scaling, the main reason for this observa-
tion is that the photon trajectory information can only be
recorded in several depth intervals with finite widths.
When the layer interface in a two-layered tissue model
was mapped to the baseline homogeneous model for scal-
ing, the interface would fall either exactly at a boundary
between two adjacent depth intervals or within a depth
interval. In the former case, the scaling result would be
identical to the simulated result from an equivalent inde-
pendent Monte Carlo simulation. However, a systematic
error would be induced in the latter case because the off-
set and number of collisions in this depth interval are dis-
tributed between the two relevant pseudolayers and the
contribution to each layer is proportional to the fraction of
the interval width within that layer. This step inherently
assumes that the offset and number of all collisions are
uniformly distributed within a depth interval, which is
not always true in an independent simulation. A scheme
that records the photon density as a function of depth at a
finer resolution to more precisely determine this distribu-
tion could improve the accuracy. Alternatively, smaller
depth interval widths in the most populated region of
photon visitation could be chosen to reduce this error. As a
rule of thumb, an interval width that is comparable to the

mean transport free path in the baseline simulation for
the depth within 1000 !m would yield an acceptable sys-
tematic error as demonstrated in Figs. 4 and 5. Given
that finer depth intervals require more memory space to
store the photon trajectory information, a scheme of vari-
able depth interval widths used in this study (refer to
Subsection 2.B for details) can be used as a trade-off. In
addition, certain variance reduction techniques, such as
geometry splitting,16,17 can be used to increase the num-
ber of useful photons in scaling, thus reducing the statis-
tical uncertainty of scaled results when a narrow range of
optical properties and source–detector separations are
evaluated.

Tables 1, 2, and 4 show the RMSEs of scaled reflectance
relative to independently simulated reflectance in the
case where one model parameter was changed at a time.
It can be seen that the RMSE value could vary over a
large range depending on which parameter is changed.
The validity of scaled results depends upon the accuracy
requirement of specific applications when the target lay-
ered tissue model contains parameters whose values are
not equal to the baseline ones. For example, if one needs
to see only the general trend of forward diffuse reflectance
spectra for a certain fiber-optic geometry, perhaps a
RMSE of 10% will be tolerable. However, if the multilay-
ered scaling result is used to create a Monte Carlo data-
base for inversion to estimate optical properties, a smaller
RMSE may be required. For a two-layered epithelial tis-
sue model in general,

(1) Diffuse reflectance is more sensitive to the aniso-
tropy factor of the top layer than to the anisotropy of the
bottom layer when the HG phase function is used in the
baseline simulations. This may be attributed to the fact
that photons are multiply scattered before they reach the
bottom layer. Moreover, the diffuse reflectance obtained at
a small separation !0 !m" is more sensitive to the aniso-
tropy factor of the top layer than those measured at larger
separations (200, 800, and 1500 !m) for a similar reason;

Fig. 8. (a) Schematic of a flat-tip fiber-optic probe geometry for diffuse reflectance measurement from a semi-infinite two-layered epi-
thelial tissue phantom and (b) the scaled version of the phantom and the probe geometry. In (a), !t1 and !t2 are the transport coefficients
of the top and bottom layers, "1 and "2 are the albedos of the two layers, the thickness of the top layer is d1, the diameter of both source
and detector fibers is D, and the source–detector separation is &. In (b), the transport coefficients of the top and bottom layers are !t1 /N
and !t2 /N, the albedos of the two layers are still "1 and "2, the thickness of the top layer becomes d1#N, the diameter of both source and
detector fibers is D#N, and the source–detector separation is &#N. Two representative photon trajectories were drawn in both (a) and
(b) to illustrate the scaling operation.
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i.e., photons have been multiply scattered upon detection
for larger separations. Similar trends are not observed for
the bottom layer.

(2) Diffuse reflectance simulated for small source–
detector separations (0 and 200 !m) is more sensitive to
the refractive index of the top layer while diffuse reflec-
tance simulated for large separations (800 and 1500 !m)
is more sensitive to the refractive index of the bottom
layer, which can be explained as follows.

When the refractive index of the top layer changes, re-
fractive index mismatch occurs at both the interface be-
tween the medium above the tissue model and the top
layer and the interface between the top and bottom lay-
ers. The photons detected for small source–detector sepa-
rations primarily travel in the top layer so the diffuse re-
flectance collected for small separations is primarily
influenced by the refractive index mismatch between the
top layer and the medium above it. When the refractive
index of the bottom layer changes, the diffuse reflectance
collected for small separations will be influenced only
minimally because the detected photons primarily travel
in the top layer. However, the diffuse reflectance collected
at the larger separations will be influenced more signifi-
cantly by the refractive index of the bottom layer because
the detected photons are more likely to travel within this
part of the tissue.

(3) Diffuse reflectance for all source–detector separa-
tions in this study (0, 200, 800, 1500 !m) is sensitive to
the choice of the phase function. For applications that re-
quire high accuracy in diffuse reflectance, such as precise
estimation of optical properties in layered media, the
high-order moments of the phase function need to be con-
sidered for these separations.12,38

In the study of using the multilayered scaling method
for inversion (Subsection 3.D), it is found to be difficult to
correlate the RMSEs in diffuse reflectance as shown in
Tables 1, 2, and 4 with the RMSEs in estimated param-
eters as shown in Tables 6–8 presumably because of the
interplay among three free parameters and the statistical
uncertainty of simulated results. For example, while
Table 1 demonstrates that the anisotropy factor in the
bottom layer has a smaller effect on diffuse reflectance
than that in the top layer does, the RMSEs in estimated
optical properties in Table 6 do not necessarily agree with
that if all three free parameters were considered simulta-
neously. It is also found that, when the number of free pa-
rameters was reduced from three to two and then to one,
the RMSEs of estimated parameters become much
smaller and the correlation between the RMSE of forward
diffuse reflectance and that of estimated parameters im-
proves progressively (results not shown due to limited
space). Another important finding is that the RMSEs in
estimated parameters are in general considerably larger
than those in forward diffuse reflectance. For example,
when the anisotropy factor is 0.8 in the bottom layer, the
RMSE of the forward diffuse reflectance for the separa-
tion of 1500 !m is 1.3% in Table 1, which is comparable to
the RMSEs of diffuse reflectance for g=0.9 and g=0.99. In
contrast, the RMSEs of estimated optical properties for
g=0.8 are considerably larger than those for g=0.9 and
g=0.99 in Table 6. This special case suggests that a small

deviation in the forward reflectance due to the change in
one parameter of the tissue model could result in a much
larger error in estimated optical properties. This observa-
tion highlights the need of accurate light transport mod-
eling for the estimation of optical properties in the UV-
VIS region for source–detector separations smaller than
2000 !m when there are several free parameters but only
limited data.

Because a scaled result is obtained by applying the
scaling operation to the photon trajectory data generated
by the baseline Monte Carlo simulation, its accuracy de-
pends on both the scaling operation and the baseline
Monte Carlo simulation. The errors induced by the two
sources seem to be independent of each other. Thus, the
convergence of the proposed method depends primarily on
the number of detected photons, i.e., the standard devia-
tion of diffuse reflectance is proportional to the square
root of number of detected photons. Although our study
has shown that the multilayered scaling method works
for a layered tissue model with layer thicknesses as thin
as one half of the mean transport free path and source–
detector separations as large as 40 mean transport free
paths, the validity of the method for a specific problem
should be empirically evaluated (for example, in the near-
infrared wavelength range where the source–detector
separations are significantly greater than those presented
in this paper).

5. CONCLUSIONS
A multilayered scaling method has been developed to cal-
culate diffuse reflectance for a wide range of optical prop-
erties based on the photon trajectory information gener-
ated from a single baseline Monte Carlo simulation,
which can dramatically reduce the computation time of
using Monte Carlo modeling for spectroscopy studies of
layered media. This method was tested on both two-
layered and three-layered epithelial tissue models. The
deviation between scaled diffuse reflectance and indepen-
dently simulated diffuse reflectance was comparable to
the statistical variation between simulated diffuse reflec-
tances from repeated independent simulations. Moreover,
the scaling method was used to create a Monte Carlo da-
tabase for a two-layered tissue model. The database was
then employed to estimate the optical properties of the
bottom layer and the thickness of the top layer for given
simulated diffuse reflectance spectra from the two-
layered epithelial tissue model. It was found that the ac-
curacy of estimated parameters was comparable to that
achieved previously using another Monte Carlo database
that was constructed with independently simulated
Monte Carlo data. The scaling method is particularly
suited to simulating diffuse reflectance spectra or creat-
ing a Monte Carlo database to estimate optical properties
of layered media, which can potentially help expand the
use of Monte Carlo modeling in the spectroscopy studies
of layered tissues.

ACKNOWLEDGMENTS
The authors appreciate helpful discussions with Greg
Palmer on this work. This research was supported by the
National Institutes of Health grant R21 CA108490.

Q. Liu and N. Ramanujam Vol. 24, No. 4 /April 2007 /J. Opt. Soc. Am. A 1023

Quan Liu


Quan Liu


Quan Liu




Corresponding author N. Ramanujam can be reached
by phone, 919-660-5307; fax, 919-684-4488; or e-mail,
nimmi@duke.edu.

REFERENCES
1. G. M. Palmer, C. Zhu, T. M. Breslin, F. Xu, K. W. Gilchrist,

and N. Ramanujam, “Monte Carlo-based inverse model for
calculating tissue optical properties. Part II: Application to
breast cancer diagnosis,” Appl. Opt. 45, 1072–1078 (2006).

2. W. Verkruysse, R. Zhang, B. Choi, G. Lucassen, L. O.
Svaasand, and J. S. Nelson, “A library based fitting method
for visual reflectance spectroscopy of human skin,” Phys.
Med. Biol. 50, 57–70 (2005).

3. S. Merritt, F. Bevilacqua, A. J. Durkin, D. J. Cuccia, R.
Lanning, B. J. Tromberg, G. Gulsen, H. Yu, J. Wang, and O.
Nalcioglu, “Coregistration of diffuse optical spectroscopy
and magnetic resonance imaging in a rat tumor model,”
Appl. Opt. 42, 2951–2959 (2003).

4. R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and
H. J. C. M. Sterenborg, “The determination of in vivo
human tissue optical properties and absolute chromophore
concentrations using spatially resolved steady-state diffuse
reflectance spectroscopy,” Phys. Med. Biol. 44, 967–981
(1999).

5. G. Zonios, L. T. Perelman, V. Backman, R. Manoharan, M.
Fitzmaurice, J. Van Dam, and M. S. Feld, “Diffuse
reflectance spectroscopy of human adenomatous colon
polyps in vivo,” Appl. Opt. 38, 6628–6637 (1999).

6. I. Pavlova, K. Sokolov, R. Drezek, A. Malpica, M. Follen,
and R. Richards-Kortum, “Microanatomical and
biochemical origins of normal and precancerous cervical
autofluorescence using laser-scanning fluorescence confocal
microscopy,” Photochem. Photobiol. 77, 550–555
(2003).

7. T. Collier, D. Arifler, A. Malpica, M. Follen, and R.
Richards-Kortum, “Determination of epithelial tissue
scattering coefficient using confocal microscopy,” IEEE J.
Sel. Top. Quantum Electron. 9, 307–313 (2003).

8. R. Drezek, C. Brookner, I. Pavlova, I. Boiko, A. Malpica, R.
Lotan, M. Follen, and R. Richards-Kortum,
“Autofluorescence microscopy of fresh cervical-tissue
sections reveals alterations in tissue biochemistry with
dysplasia,” Photochem. Photobiol. 73, 636–641 (2001).

9. N. Ramanujam, R. Richards-Kortum, S. Thomsen, A.
Mahadevan-Jansen, and M. Follen, “Low temperature
fluorescence imaging of freeze-trapped human cervical
tissues,” Opt. Express 8, 335–343 (2000).

10. R. L. P. van Veen, H. J. C. M. Sterenborg, A. Pifferi, A.
Torricelli, E. Chikoidze, and R. Cubeddu, “Determination of
visible near-IR absorption coefficients of mammalian fat
using time- and spatially resolved diffuse reflectance and
transmission spectroscopy,” J. Biomed. Opt. 10, 54004
(2005).

11. T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion
theory model of spatially resolved, steady-state diffuse
reflectance for the noninvasive determination of tissue
optical properties in vivo,” Med. Phys. 19, 879–888
(1992).

12. F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J.
Tromberg, and C. Depeursinge, “In vivo local determination
of tissue optical properties: applications to human brain,”
Appl. Opt. 38, 4939–4950 (1999).

13. A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner,
and B. C. Wilson, “Spatially resolved absolute diffuse
reflectance measurements for noninvasive determination of
the optical scattering and absorption coefficients of
biological tissue,” Appl. Opt. 35, 2304–2314 (1996).

14. A. Kienle and M. S. Patterson, “Determination of the
optical properties of turbid media from a single Monte
Carlo simulation,” Phys. Med. Biol. 41, 2221–2227
(1996).

15. C. K. Hayakawa, T. Spanier, F. Bevilacqua, A. K. Dunn, J.

S. You, B. J. Tromberg, and V. Venugopalan, “Perturbation
Monte Carlo methods to solve inverse photon migration
problems in heterogeneous tissues,” Opt. Lett. 26,
1335–1337 (2001).

16. Q. Liu and N. Ramanujam, “Sequential estimation of
optical properties of a two-layered epithelial tissue model
from depth-resolved ultraviolet–visible diffuse reflectance
spectra,” Appl. Opt. 45, 4776–4790 (2006).

17. X-5 Monte Carlo Team, “MCNP Vol. I: Overview and
Theory,” http://mcnp-green.lanl.gov/manual.html
(Diagnostics Applications Group, Los Alamos National
Laboratory, 2003), pp. 130–158.

18. E. Tinet, S. Avrillier, and J. M. Tualle, “Fast semianalytical
Monte Carlo simulation for time-resolved light propagation
in turbid media,” J. Opt. Soc. Am. A 13, 1903–1915
(1996).

19. E. Battistelli, P. Bruscaglioni, A. Ismaelli, and G. Zaccanti,
“Use of two scaling relations in the study of multiple-
scattering effects on the transmittance of light beams
through a turbid atmosphere,” J. Opt. Soc. Am. A 2,
903–911 (1985).

20. R. Graaff, M. Koelink, F. de Mul, W. Zijlstra, and A. C. M.
Dassel, “Condensed Monte Carlo simulations for the
description of light transport,” Appl. Opt. 32, 426–434
(1993).

21. G. M. Palmer and N. Ramanujam, “Monte Carlo-based
inverse model for calculating tissue optical properties. Part
I: Theory and validation on synthetic phantoms,” Appl.
Opt. 45, 1062–1071 (2006).

22. A. Sassaroli, C. Blumetti, F. Martelli, L. Alianelli, D.
Contini, A. Ismaelli, and G. Zaccanti, “Monte Carlo
procedure for investigating light propagation and imaging
of highly scattering media,” Appl. Opt. 37, 7392–7400
(1998).

23. J. Swartling, A. Pifferi, A. M. K. Enejder, and S.
Andersson-Engels, “Accelerated Monte Carlo models to
simulate fluorescence spectra from layered tissues,” J. Opt.
Soc. Am. A 20, 714–727 (2003).

24. The Condor Team, “Condor—high throughput computing,”
http://www.cs.wisc.edu/condor/ (1997–2006).

25. L. Wang, S. L. Jacques, and L. Zheng, “MCML—Monte
Carlo modeling of light transport in multi-layered tissues,”
Comput. Methods Programs Biomed. 47, 131–146
(1995).

26. Q. Liu, C. Zhu, and N. Ramanujam, “Experimental
validation of Monte Carlo modeling of fluorescence in
tissues in the UV–visible spectrum,” J. Biomed. Opt. 8,
223–236 (2003).

27. P. Laven, “Refractive index of water as a function of
wavelength,” http://www.philiplaven.com/p20.html (2003).

28. I. H. Malittson, “Refractive index versus wavelength
reference table measured at 20 °C: synthetic fused silica,”
http://www.polymicro.com/catalog/a_12.htm (1965).

29. R. Drezek, K. Sokolov, U. Utzinger, I. Boiko, A. Malpica, M.
Follen, and R. Richards-Kortum, “Understanding the
contributions of NADH and collagen to cervical tissue
fluorescence spectra: modeling, measurements, and
implications,” J. Biomed. Opt. 6, 385–396 (2001).

30. F. C. Bohren and R. D. Huffman, Absorption and Scattering
of Light by Small Particles (Wiley, 1983).

31. W.-F. Cheong, “Appendix to Chapter 8: summary of optical
properties,” in Optical-Thermal Response of Laser-
Irradiated Tissue, A. J. Welch and M. J. C. van Gemert,
eds. (Plenum, 1995), pp. 275–303.

32. D. R. Wyman, M. S. Patterson, and B. C. Wilson,
“Similarity relations for anisotropic scattering in Monte
Carlo simulations of deeply penetrating neutral particles,”
J. Comput. Phys. 81, 137–150 (1989).

33. J. J. J. Dirckx, L. C. Kuypers, and W. F. Decraemer,
“Refractive index of tissue measured with confocal
microscopy,” J. Biomed. Opt. 10, 44014 (2005).

34. L. Jiancheng, L. Zhenhua, W. Chunyong, and H. Anzhi,
“Experimental measurement of the refractive index of
biological tissues by total internal reflection,” Appl. Opt.
44, 1845–1849 (2005).

1024 J. Opt. Soc. Am. A/Vol. 24, No. 4 /April 2007 Q. Liu and N. Ramanujam



35. V. Tsenova and E. V. Stoykova, “Refractive index
measurement in human tissue samples,” in Proc. SPIE
5226, 413–417 (2003).

36. G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E.
Bouma, M. R. Hee, and J. G. Fujimoto, “Determination of
the refractive index of highly scattering human tissue by
optical coherence tomography,” Opt. Lett. 20, 2258–2260
(1995).

37. Q. Liu and N. Ramanujam, “Experimental proof of the
feasibility of using an angled fiber-optic probe for depth-
sensitive fluorescence spectroscopy of turbid media,” Opt.
Lett. 29, 2034–2036 (2004).

38. F. Bevilacqua and C. Depeursinge, “Monte Carlo study of
diffuse reflectance at source–detector separations close to
one transport mean free path,” J. Opt. Soc. Am. A 16,
2935–2945 (1999).

Q. Liu and N. Ramanujam Vol. 24, No. 4 /April 2007 /J. Opt. Soc. Am. A 1025


