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Abstract:  Although conventional autofluorescence spectroscopy, in which 
fluorescence emission spectra are recorded for fixed excitation wavelengths, 
has demonstrated good performance in tissue diagnosis, it suffers from 
prolonged data acquisition time and broad-band fluorescence features. 
Synchronous spectroscopy has been proposed to overcome the limitations of 
conventional fluorescence spectroscopy but has not been applied to imaging 
for tissue diagnosis in vivo. Our group has developed a synchronous 
fluorescence imaging system to combine the great diagnostic potential of 
synchronous spectroscopy and the large field of view of imaging for cancer 
diagnosis. This system has been tested in a mouse skin model to capture 
synchronous fluorescence images. A simple discriminant analysis method 
and a more complicated multi-variate statistical method have been 
developed to generate a single diagnostic image from a large number of raw 
fluorescence images. Moreover, it was demonstrated that the diagnostic 
image generated from synchronous data is comparable to that generated 
from full spectral data in classification accuracy. 
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1. Introduction  

Tissue autofluorescence may be contributed by several endogenous fluorophores such as 
aromatic amino acids (e.g., tryptophan, tyrosine, phenylalanine), structural proteins (e.g., 
collagen, elastin), nicotiamide adenine dinucleotide (NADH), flavin adenine dinucleotide 
(FAD), porphyrins, lipopigments (e.g., ceroids, lipofuscin), and other biological components. 
Conventional fluorescence spectroscopy uses either a fixed-wavelength excitation (λexc) to 
produce an emission spectrum or a fixed wavelength emission (λemm) to record an excitation 
spectrum. Autofluorescence spectroscopy using laser-induced fluorescence (LIF) with fixed-
excitation or fixed-emission wavelengths has been explored for cancer diagnosis by several 
groups [1-7]. Although changes in fluorescence profiles using fixed excitation/emission have 
been reported by these researchers, the changes do not provide "unique narrow-band spectral 
signatures" useful for unequivocal diagnostic purposes, which did not fully exploit the 
diagnostic potential of fluorescence spectroscopy. Furthermore, this method requires 
prolonged acquisition time to collect full spectral data. Our laboratory has previously 
developed the synchronous fluorescence (SF) method[8, 9], which could provide a simple 
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way to rapidly measure fluorescence signals and spectral fingerprints of complex biological 
samples such as tissue. With synchronous spectroscopy, the fluorescence signal is recorded 
while both λemm and λexc are simultaneously scanned.  A constant wavelength interval is 
maintained between the excitation and the emission wavelengths throughout the spectrum.  As 
a result, the intensity of the synchronous signal Is, can be written as the product of three 
functions as follows 5,6: 

 Is(λexc, λemm) = k EX (λexc) ⋅∑
i

FEi(λexc, λemm) ⋅ EM (λemm)  (1) 

where     
k = a constant accounting for the measurement geometry, 
EX = excitation function that describes the probability of excitation light reaching the 
fluorophore, 
FEi = fluorescence efficiency of the i-th fluorophore at which excitation light at λexc is 
converted to fluorescent light at λemm, which is related to the absorption coefficient and 
fluorescence quantum yield of the fluorophore, 
EM =  emission function that describes the probability of emitted light being detected. 

When the wavelength interval Δλ between λexc and λemm is chosen properly, the resulting 
spectrum will show one or a few features that are much more resolvable than those in the 
conventional fluorescence emission spectrum measured for a fixed excitation wavelength. For 
example, if the wavelength interval is chosen to be the difference between the peak absorption 
wavelength and the peak emission wavelength for a single fluorophore, the synchronous 
spectrum of a sample containing this fluorophore would show a single sharp peak associated 
with this fluorophore. 

This method has been developed for multi-component analysis and used to obtain 
fingerprints of real-life samples and for enhancing the selectivity in the assay of complex 
chemical and biological systems [9-13].  This SF procedure simplifies the emission spectrum 
and provides for greater selectivity when measuring fluorescence or phosphorescence from a 
mixture of compounds. The SF method has been the basis for various instruments developed 
by our group including an acoustooptic tunable filter system [11] . Most of its early 
applications focused on examining in vitro samples, for example, analyzing benzo[a]pyrene 
(BaP) in human and animal urine [14], determining carcinogen-macromolecular adducts [14, 
15], and measuring mitochondrial uptake of Rhodamine 123 in cells [16]. Only recently this 
technique started to find its use in optical diagnosis of cancers. Several groups have carried 
out synchronous fluorescence spectroscopy on ex vivo tissues, including corneas [17], cervical 
tissues [18] and breast tissues [19]. Diagaradjane, et al., [20] have performed synchronous 
fluorescence spectroscopy to characterize DMBA-TPA-induced squamous cell carcinoma in 
mice in vivo. Their results demonstrated high diagnostic accuracy (> 80%) in differentiating 
premalignant and malignant conditions from normal tissues when synchronous fluorescence 
spectroscopy was used in combination with a statistical analysis method. Our group has 
performed measurements of a variety of skin tissues to illustrate the narrow-band features and 
selectivity of the SF technique for in vivo analysis [21]. It was found that, while the 
conventional fixed-excitation method produces fluorescence spectra with broad-band features, 
the SF technique is able to provide characteristic SF signatures for different types of skin 
tissues.  

The motivation for this work came from two aspects. First, compared to conventional 
fluorescence spectroscopy, where an excitation-emission matrix (EEM) needs to be measured 
to fully characterize samples containing multiple fluorophores, synchronous fluorescence 
spectroscopy provides a tool that can detect multiple fluorophores with a much smaller 
number of excitation and emission wavelengths thus could rapidly reduce data acquisition 
time [21]. However, given that synchronous fluorescence data is only a small subset of the full 
EEM data, one question arises naturally, i.e. whether synchronous fluorescence spectroscopy 
offers the diagnostic capability comparable to conventional fluorescence emission 
spectroscopy for tissue diagnosis.  

#84338 - $15.00 USD Received 21 Jun 2007; revised 12 Sep 2007; accepted 13 Sep 2007; published 17 Sep 2007

(C) 2007 OSA 1 October 2007 / Vol. 15,  No. 20 / OPTICS EXPRESS  12585



 

Second, several multi-spectral imaging systems using diffuse reflectance or fluorescence 
with fixed excitation wavelengths have been reported. For example, multi-spectral reflectance 
imaging systems have been used to measure skin hydration [22], detect melanoma [23], and to 
assess the alterations in the light scattering properties of cervical neoplasias after the 
application of acetic acid solution [24]. Multi-spectral imaging that combines diffuse 
reflectance and fixed-excitation fluorescence has been tried for brain tumor demarcation [25]. 
In contrast, there were no similar imaging systems for the synchronous fluorescence technique 
published. All the above cited works belong to the category of point spectroscopy. It would be 
a crucial step to develop a synchronous fluorescence imaging system and appropriate data 
analysis methods in order to maximally explore the potential of this technique in real-world 
applications. 

To apply the synchronous fluorescence technique to an imaging modality, we have 
developed such a synchronous fluorescence imaging system that can be incorporated into an 
endoscope for the GI cancer detection. Moreover, to answer the previous question, i.e. 
whether synchronous fluorescence spectroscopy offers the diagnostic capability comparable to 
conventional fluorescence emission spectroscopy for tissue diagnosis,, we have tested this 
system in a mouse skin model to capture both synchronous fluorescence images and full 
spectral images. A simple discriminant analysis method and a more complicated multi-variate 
statistical method have been developed to differentiate pixels corresponding to malignant 
tissue from pixels corresponding to normal tissue. A Matlab code was written so that the 
training pixels can be selected manually for a chosen classifier to learn. Then the trained 
classifier can automatically generate a diagnostic image indicating the condition of each pixel. 
Both synchronous fluorescence images and full spectral fluorescence images were analyzed 
using the two methods. The specificity and sensitivity of the diagnostic image obtained from 
synchronous data were calculated, for which the diagnostic image obtained from full spectra 
data were used as the gold standard. These results provided the quantitative proof for the 
diagnostic potential of synchronous imaging. 

2. Methods 

2.1 System configuration 

A multi-spectral imaging system was used to take the fluorescence images of the mouse skin. 
The schematic of the system is shown in Fig. 1. The detail of the system has been described 
elsewhere [26], therefore only the main features are presented as follows. An optical-
parametric oscillator (OPO) pumped by a Nd:YAG laser (Opolette, Opotek, CA) provided 
excitation light from 420 to 700 nm with an average power of 40 mW. The laser pulses were 
generated at 20 Hz, and each pulse lasted for 5 ns. A quartz fiber was used to deliver the 
excitation light onto the mouse skin through the small biopsy channel of the endoscope and a 
fiber imaging bundle (# K02520AH1, Karl Storz Optical Co.) was employed to collect 
fluorescence light and backscattered excitation light through the large biopsy channel of the 
endoscope. The illuminated area (about 1 cm in diameter) was significantly larger than the 
imaging area to ensure uniform illumination. A beam splitter was used to deflect 7% of 
collected light to a charge-coupled device (CCD) to record reflectance images. The remaining 
93% of collected light was allowed to transmit to a liquid crystal tunable filter (LCTF for 
visible spectrum with 7-nm bandwidth, Cambridge Research & Instrumentation, Inc., MA). 
The out-of-band transmission ratio of the LCTF is typically 0.01% according to the 
manufacturer’s specification. The filter was tuned to only allow fluorescence light at one 
wavelength a time to reach an intensified CCD (ICCD) (PIMAX-512-T-18 Gen. II, Roper 
Scientific) to record fluorescence images. 
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Fig. 1. Schematic of the multi-spectral imaging system. 
 

2.2 Experimental protocol 

Five nude mice, which didn’t have body hair due to genetic mutation, were injected 
subcutaneously in the lower right and left lumbar region with 100μl of Fischer rat 344 
tracheal carcinoma cells (IC-12) [27] at a concentration of 107 cells/ml to induce tumors. The 
mice were then incubated for seven to eight days to allow tumors to grow to approximately 5 
mm in diameter. Spectral imaging data were acquired from anesthetized mice. The laser 
source worked at 20 Hz and the ICCD accumulated four frames for each image to improve the 
signal-to-noise ratio. So it took 0.2 sec to acquire one image. It took about half an hour to 
acquire a whole set of fluorescence images from each mouse, which included the time of 
manual operation as the system was not fully automated. The mice were euthanized after data 
acquisition. 

The excitation wavelength was varied from 420 to 600 nm every 20 nm. Fluorescence 
images were acquired at the emission wavelength starting from the excitation wavelength plus 
30 nm till 650 nm at a 10-nm increment. The image taken at (λexc = 600 nm, λemm = 630 nm) 
was saturated potentially due to unexpected ambient light thus not used in analysis. This 
procedure yielded totally 119 images as shown in Fig. 2. The synchronous fluorescence 
images were a subset of the fluorescence images, for which the excitation wavelength varied 
from 420 to 600 nm every 20 nm. The single emission wavelength was the excitation 
wavelength plus Δλ (differential wavelength), which yielded totally 8 to 10 images. The 
differential wavelength was varied from 30 to 90 nm every 10 nm to obtain seven sets of 
synchronous data. As an example, the images marked by dashed rectangles in Fig. 2 are the 
synchronous data for Δλ = 30 nm. 
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Fig. 2. Panel of raw fluorescence images. In the order from left to right and then from top to 
bottom, the initial excitation wavelength is 420 nm and the emission wavelength starts with the 
excitation wavelength plus 30 nm and increases at an increment of 10 nm first. When the 
emission wavelength reaches 650 nm, the excitation wavelength increases by 20 nm and the 
emission wavelength starts from the new excitation wavelength plus 30 nm and increases 
again. This continues till (λexc = 600 nm, λemm = 650 nm). The image taken at (λexc = 600 nm, 
λemm = 630 nm) was not shown because it was saturated. As an example for synchronous data, 
the images highlighted by the dashed rectangles correspond to synchronous data acquired for 
Δλ = 30 nm. It should be pointed out that the absolution intensity levels of those images have 
been changed from their original values to ensure the visibility of all the images in one panel. 

 

2.3 Data analysis 

All the fluorescence images were first normalized by the output power of the OPO light 
source at the corresponding excitation wavelength to remove the wavelength dependence of 
the excitation power. The second step of preprocessing is to remove motion artifacts that were 
likely due to animal breathing. To remove the motion artifacts, the normalized intensity 
images were converted to binary images by assigning one to any pixel whose intensity is 
larger than the average of the 25-th and 75-th percentiles in the set of all pixel intensity values 
and zero to other pixels. The centroid of each binary image was calculated. The fluorescence 
image taken at (λexc = 440 nm, λemm = 540 nm) was chosen as the reference. All other images 
were coregistered with the reference image in both x and y dimensions according to the 
positions of the centroids. 

Two methods were used to process these fluorescence images, which were illustrated in 
Figs. 3(a) and 3(b). Figure 3(a) shows a method of discriminant analysis [28], which was 
implemented by the “classify” function in Matlab 7.2 (Mathworks, Inc. MA). The “quadratic” 
discriminant function was chosen for classification, in which multivariate normal densities 
with covariance estimated for each group are used in the analysis. The pathologist examined 
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the tissue to determine the exact location and boundary of tumors. To be safe, the pixels in a 
region smaller than the examined region were used for the training purpose. The training 
pixels in the coregistered images that respectively correspond to normal tissue, malignant 
tissue and the background were manually labeled using a graphical interface written in 
Matlab. The spectra associated with the training pixels were used to train the discriminant 
analysis classifier. Then the spectra for all pixels were fed into the trained classifier. A 
diagnostic image was generated as the result indicating the normal, malignant and background 
regions with different colors.  

 
(a) 

 

 
(b) 

 
Fig. 3. Flowchart of (a) the discriminant analysis of spectral data; (b) the multi-variate 
discriminant analysis. In (b), ten most important principal component (PC) scores for full 
spectra analysis or all key PC scores for synchronous spectra analysis instead of original 
spectral data were used for classification. The left dotted rectangle indicates the training part 
while the right dotted rectangle indicates the classification part. 

 
A multi-variate statistical method [29] shown in Fig. 3(b) offers an alternative way to 

reduce data dimension while maximizing the diagnostic capability of these fluorescence 
images. Principal component analysis (PCA) was first carried out to convert the fluorescence 
spectra associated with training pixels to uncorrelated principal components. The Wilcox rank 
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sum test was used to find principal components (PCs) that demonstrate most significant 
differences between normal and malignant regions. The key PC scores that explain most of 
the variance and demonstrate significant differences between normal and malignant pixels 
were used to train the same classifier as in the first method. Then the key PC scores of 
fluorescence spectra for all pixels were fed into the trained classifier to generate the diagnostic 
image. The procedure not only helps reduce data dimension but also removes redundant 
information in the raw data that may negatively affect the classification accuracy. 

Both synchronous data and full spectra data were analyzed using the two methods. In the 
first method, totally 119 data points for each pixel were concatenated to form a single 
spectrum as the input in case of full spectra data. While in case of synchronous data, there 
were only 8-10 data points for each pixel as the input for classification. In the second method, 
the PCA of a single spectrum for full spectra data generated 119 PCs. Only the first 10 key PC 
scores were retained for classification in the analysis. And in case of synchronous data, all the 
PC scores that show significant differences between normal and malignant regions were 
retained for classification due to the small number of available data points. Because a 
pathologist can only tell roughly the locations of normal and malignant regions, the precise 
gold standard result for every pixel was obtained by classifying the pixels based on the full 
spectra data with the guidance of the pathologist. The specificity and sensitivity of 
classification using the synchronous data were calculated according to Eqs. (2) and (3). The 
classification accuracy is then the measure of the diagnostic potential of synchronous data 
relative to full spectra data. 

 
Specificity using synchronous data = Number of pixels classified as normal in 

both synchronous spectra analysis and full spectra analysis / Number of pixels 
classified as normal in full spectra analysis   (2) 

 
Sensitivity using synchronous data = Number of pixels classified as malignant in 

both synchronous spectra analysis and full spectra analysis / Number of pixels 
classified as malignant in full spectra analysis   (3) 

3. Results 

Figure 4 show the manually labeled training image overlaid on a representative raw 
fluorescence image. The normal region (blue polygon) exhibits higher fluorescence intensity 
while the malignant region (green polygon) shows lower fluorescence intensity. A circular 
field of view can be barely seen on the image. 

 

 
Fig. 4. The semi-transparent version of the manually labeled training image overlaid on a 
representative fluorescence image taken at (λexc = 440 nm, λemm = 540 nm). The blue region 
was manually assigned as normal, the green region was assigned as malignant and the dark 
gray region was assigned as the background. 
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Figure 5(a) show a diagnostic image overlaid on a representative raw fluorescence image, 
where the diagnostic image was generated by full spectra analysis with the first method [Fig. 
3(a)]. Figure 5(b) show a diagnostic image overlaid on a representative synchronous 
fluorescence image, where the diagnostic image was generated by synchronous spectra 
analysis (Δλ = 30 nm) with the first method as well. The shape of the boundary between 
normal and background regions in Fig. 5(b) is similar to that in Fig. 5(a). The quantitative 
comparison was carried out by calculating the specificity and sensitivity of classification 
according to Eqs. (2) and (3). The results for a range of differential wavelengths (Δλ = 30 - 90 
nm) are listed in Table 1. Three differential wavelengths, including 30 nm, 50 nm and 90 nm, 
yield best accuracies according to Table 1. 

   
 

(a)    (b) 

Fig. 5. The semi-transparent version of the diagnostic image generated (a) by full spectra 
analysis overlaid on top of a representative image taken at (λexc = 440 nm, λemm = 540 nm) and 
(b) by synchronous spectra analysis (Δλ = 30 nm) overlaid on top of a representative image 
taken at (λexc = 540 nm, λemm = 570 nm). The method of analysis was shown in Fig. 3(a). The 
central green region was classified as malignant and the surrounding blue region was classified 
as normal, while the red region was the background. 

 

Table 1. Specificities and sensitivities of classification using synchronous data calculated according to Eqs. (2) and 
(3), in which the diagnosis image generated from full spectra analysis [Fig. 5(a)] was used as the gold standard. Both 

sets of data were analyzed with the first method [Fig. 3(a)]. 
 

Δλ (nm) 
Number of Data 
Points 

Specificity (%) Sensitivity (%) 

30 9 72 87 

40 10 37 96 

50 10 60 94 

60 9 25 99 

70 9 38 97 

80 8 25 97 

90 8 63 83 

 

Figure 6(a) shows the semi-transparent version of the diagnostic image generated by 
analyzing the images of the ten key PC scores, generated from full spectra analysis using the 
second method [Fig. 3(b)], overlaid on top of a representative fluorescence image taken at 
(λexc = 440 nm, λemm = 540 nm). It should be noted that the ten key PC scores account for 99% 
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of the total variance contained in the raw data. Therefore a vast majority of information in the 
raw data has been taken advantage of. Theoretically this approach yields a more accurate 
diagnostic image than the raw data set because some fractions of the raw data that don’t 
exhibit significant difference between malignant and normal regions have been removed. 

 

   
 

(a)    (b) 
 

Fig. 6. The semi-transparent version of the diagnostic image generated (a) by analyzing the 
images of first ten key principal component (PC) scores calculated from full spectra data 
overlaid on top of a representative image taken at (λexc = 440 nm, λemm = 540 nm) and (b) by 
analyzing the images of all key PC scores calculated from a single set of synchronous spectra 
data (Δλ = 30 nm) overlaid on top of a representative image taken at (λexc = 540 nm, λemm = 570 
nm). The method of analysis was shown in Fig. 3(b). The central green region was classified as 
malignant and the blue region was classified as normal, while the red region was the 
background. 

Synchronous images were also analyzed with the second method to ensure that the 
diagnostic potential of synchronous data was fully exploited and the generated diagnostic 
image for Δλ = 30 nm was shown in Fig. 6(b). Interestingly, Fig. 6(a) and Fig. 5(a) show 
considerable differences in the classification result especially in the bottom right corner of the 
malignant area (green region). This suggests that the use of those key PCs instead of full 
spectra did affect classification significantly. In contrast, there are no significant differences in 
the boundary between normal and malignant regions in Fig. 6(b) and Fig. 5(b), which infers 
that this set of synchronous data is close to the extracted PCs in terms of classification. The 
specificities and sensitivities of the diagnostic image generated from  synchronous data were 
calculated according to Eqs. (2) and (3) again and listed in Table 2, for which the diagnostic 
image [shown in Fig. 6(a)] based on the first 10 sets of key PC scores generated from full 
spectra analysis was used as the gold standard. It can be seen from the second column that 
most PCs extracted from synchronous data demonstrated significant differences between 
normal and malignant regions. Three differential wavelengths, 30 nm, 50 nm and 90 nm, 
continue to yield best accuracies just as in Table 1. 
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Table 2. Specificities and sensitivities of classification using synchronous data calculated according to Eqs. (2) and 
(3), in which the diagnosis image generated from full spectra analysis [Fig. 6(a)] was used as the gold standard. Both 

sets of data were analyzed with the second method [Fig. 3(b)]. 
 

Δλ (nm) 
Numbers of Key 
PCs and All PCs 

Specificity (%) Sensitivity (%) 

30 7/9 75 93 

40 8/10 37 90 

50 7/10 71 90 

60 7/9 26 97 

70 9/9 39 95 

80 8/8 25 94 

90 8/8 64 82 

 

4. Discussion 

We have shown that the classification results based on synchronous data analysis can achieve 
reasonably good accuracy compared to the results based on full spectra analysis when the 
differential wavelength is chosen appropriately. A great advantage of synchronous 
fluorescence imaging is that a much smaller number of data points are required while more 
than one fluorophores could still be detected. Furthermore, the contrast between fluorescence 
peaks and surrounding background in the spectrum can be significantly enhanced, from which 
the classification relied on the subtle spectral differences between malignant and normal 
tissues will benefit. This approach thus can dramatically reduce data acquisition time and still 
keep the classification accuracy reasonably high as seen in Tables 1 and 2. 

In our measurements, synchronous imaging essentially scans the excitation and emission 
wavelength simultaneously while keeping the differential wavelength at a constant, which 
would be illustrated as a diagonal line across an EEM plot. Intuitively the choice of the 
differential wavelength should allow the synchronous scan to cross those important 
fluorescence peaks corresponding to known fluorophores. The optimization of the differential 
wavelength in a dilute mixture of multiple components has been discussed previously [30]. As 
inferred from that discussion, the optimal differential wavelength needs to be determined 
empirically given the complexity of tissue components. Tissues contain not only multiple 
fluorophores but also strong absorbers such as hemoglobin that could significantly alter the 
most valuable wavelengths for diagnosis. In practice, the differential wavelength can be 
varied from the smallest Stokes shift (difference between absorption and fluorescence peaks) 
to the largest Stokes shift of those most important endogenous tissue fluorophores, one or a 
few differential wavelengths that yield the best classification accuracy should be chosen as the 
optimal value(s). 

Although the three differential wavelengths, 30, 50 and 90 nm, always demonstrate good 
accuracies in the above study, they are by no means unanimously the best differential 
wavelengths for tissue diagnosis. A few synchronous scans may be combined to achieve 
optimal classification. In addition to the discriminant analysis used in this study, some other 
classifiers have been reported to yield good performance, for example, support vector 
machine, artificial neural network and genetic algorithm. They can also be adapted to process 
spectral imaging data. In the future clinical study, these classifiers will be examined as well to 
achieve the balance between classification accuracy and data analysis time. 

Given that it took 0.2 sec to acquire one image with this system, acquiring images for full 
spectra (totally 120 images) would theoretically take about 24 seconds. In contrast, acquiring 
images for synchronous spectra (totally 10 images) would take about 3 seconds, which is 
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much shorter than the time required to take images for full spectra. The whole process of data 
analysis to generate a single diagnostic image takes only a few seconds if the classifier is 
trained in advance. Therefore the synchronous imaging system can be used for clinical studies 
once all above procedures are automated, which is part of ongoing work. 

5. Conclusion 

We have developed a synchronous fluorescence imaging system to combine the great 
diagnostic potential of synchronous spectroscopy and the large field of view of imaging for 
cancer diagnosis. This system has been tested in a mouse skin model to capture synchronous 
fluorescence images. A simple discriminant analysis method and a more complicated multi-
variate statistical method have been developed to generate a single diagnostic image from a 
large number of raw fluorescence images. Moreover, it was quantitatively demonstrated that 
the diagnostic image generated from synchronous data is comparable to that generated from 
full spectral data in classification accuracy. 
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