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Abstract. Key tissue parameters, e.g., total hemoglobin concentration and tissue oxygenation, are important
biomarkers in clinical diagnosis for various diseases. Although point measurement techniques based on diffuse
reflectance spectroscopy can accurately recover these tissue parameters, they are not suitable for the exami-
nation of a large tissue region due to slow data acquisition. The previous imaging studies have shown that hemo-
globin concentration and oxygenation can be estimated from color measurements with the assumption of known
scattering properties, which is impractical in clinical applications. To overcome this limitation and speed-up
image processing, we propose a method of sequential weighted Wiener estimation (WE) to quickly extract
key tissue parameters, including total hemoglobin concentration (CtHb), hemoglobin oxygenation (StO2), scat-
terer density (α), and scattering power (β), from wide-band color measurements. This method takes advantage of
the fact that each parameter is sensitive to the color measurements in a different way and attempts to maximize
the contribution of those color measurements likely to generate correct results in WE. The method was evaluated
on skin phantoms with varying CtHb, StO2, and scattering properties. The results demonstrate excellent agree-
ment between the estimated tissue parameters and the corresponding reference values. Compared with tradi-
tional WE, the sequential weighted WE shows significant improvement in the estimation accuracy. This method
could be used to monitor tissue parameters in an imaging setup in real time. © 2014 Society of Photo-Optical Instrumentation
Engineers (SPIE) [DOI: 10.1117/1.JBO.19.12.127001]
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1 Introduction
Key tissue parameters, e.g., total hemoglobin concentration and
tissue oxygenation, are important biomarkers in clinical diagnosis
for various diseases.1 The previous studies have shown that dif-
fuse reflectance spectroscopy can be used to accurately recover
these parameters noninvasively using different methods, such as
Monte Carlo-based inverse model,2 diffusion theory-based
model,3 and the look-up table method.4 However, the common
disadvantage of traditional diffuse reflectance spectroscopy is
slow data acquisition when multiple locations need to be mea-
sured.5 This is attributed to the employment of fiber-optic probes
in traditional diffuse reflectance spectroscopy, which can only
perform point measurements. Slow data acquisition prohibits
the use of diffuse reflectance spectroscopy in those applications
in which the observation of fast changing phenomena is required.

Several spectral imaging techniques are developed to speed up
the data acquisition. Multispectral imaging6–8 captures image data
at certain wavelengths using specific filters or instruments that are
sensitive to particular wavelengths instead of the entire spectrum.
The advantage of this technique is that both the spectral and spa-
tial information can be recorded simultaneously.9 However, the
data acquisition is time consuming when high spectral resolution
is required. This limitation originates from the employment of a
wavelength selection/dispersion device in most imaging setups,
for which information at only one or a couple of wavelengths
can be collected in one measurement. Snapshot hyperspectral

imaging is a technique in which both the spatial and spectral
information are acquired simultaneously in a snap shot10 but
in a coded manner. The key idea in snapshot hyperspectral im-
aging is that hyperspectral images can be captured all at once on a
two-dimensional detector array. The disadvantage of snapshot
hyperspectral imaging techniques is that data postprocessing is
slow when the required spectral resolution is high. In addition, a
large detector array is needed to properly sample a sufficient num-
ber of voxels and those large detector arrays are usually expen-
sive. To overcome this limitation, spectral imaging can be realized
by spectral reconstruction from wide-band measurements such as
color imaging measurements, in which a method capable of fast
and accurate spectral reconstruction is critical. Various methods
have been explored to reconstruct diffuse reflectance spectra from
wide-band measurements, which includes pseudo-inverse,11

finite-dimensional modeling,12 andWiener estimation (WE).13 Our
previous study5 has shown that diffuse reflectance spectra can be
accurately recovered from in vivo color measurements on human
skin. Therefore, it may be possible to directly derive tissue
parameters from wide-band measurements.

Multiple early studies14,15 have shown that hemoglobin concen-
tration and oxygenation in tissue phantoms with known scattering
properties can be estimated from color measurements in R(Red), G
(Green), B(Blue) channels using a method involving Monte Carlo
modeling and multiple steps of regression analysis. However,
the scattering properties of tissues carry important physiological
information,16 which are typically unknown and can vary
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significantly from one subject to another. To our best knowledge,
there is no previous study in which both absorption and scattering
properties are directly estimated from wide-band measurements in
a tissue model with varying or unknown scattering properties.

In this study, we reported a method of sequential weightedWE
to directly extract total hemoglobin concentration (CtHb), hemo-
globin oxygenation (StO2), scatterer density (α), and scattering
power (β) from wide-band measurements. This method takes ad-
vantage of the fact that each parameter is sensitive to the color
measurements to a different degree and attempts to maximize
the contribution of those color measurements that are more likely
to generate correct results in the process of WE. The method was
evaluated on tissue phantoms with varying CtHb, StO2, and scat-
tering properties to mimic human skin, in which a 3-charge
coupled device (CCD) camera was used to capture the wide-
band color measurements from the tissue phantoms. The results
demonstrate excellent agreement between the estimated tissue
parameters and the corresponding reference values. Compared
with the traditional WE, the method of sequential weighted
WE shows significant improvement, especially for hemoglobin
oxygenation estimation. This method possesses great potential
in the noninvasive and real-time monitoring of tissue parameters
in an imaging setup to investigate fast changing phenomena.

2 Materials and Methods
In this study, tissue phantoms with varying absorption, scattering,
and oxygenation were used to mimic the human skin. Both tradi-
tional WE and sequential weighted WE were tested to extract tis-
sue parameters, including the total hemoglobin concentration
(CtHb), hemoglobin oxygenation (StO2), scatterer density (α),
and scattering power (β). The leave-one-out method was used
for cross validation and the genetic algorithm was utilized to
find the optimal combination of coefficients. All the postprocess-
ing steps, including the traditional WE, sequential weighted WE,
leave-one-out method, and genetic algorithm, were coded and run
in Matlab (R2011b, MathWorks, Natick, Massachusetts). The
details in each step are described as follows.

2.1 System Information

In this study, all the data were measured by the system shown in
Fig. 1, which consisted of a white light source (UHP-Mic-LED-

White, Prizmatix, Givat-Shmuel, Illinois), a 3-CCD (AT-200
GE, JAI, San Jose, California), a magnetic stirrer (97042-596,
VWR, Radnor, Pennsylvania), and two linear polarizers
(LPVISE100-A, Thorlabs, Newton, New Jersey). White light
passed through the first linear polarizer, which was aligned
such that its direction of polarization was parallel to the
source-sample-detector plane. The illumination light was deliv-
ered at a fixed angle of 45 deg onto a sample to avoid the col-
lection of specular reflectance.17 The second linear polarizer was
put in front of the 3-CCD in order to acquire signals with two
different polarization directions (parallel or perpendicular to the
incident polarization). The signal detected with parallel polari-
zation contained contributions from both the superficial and
deep regions inside the phantom, in which photons responsible
for contribution from the superficial are mostly scattered only a
single or a few times.18,19 Therefore, the signal detected with
parallel polarization was expected to be sensitive to the scatter-
ing properties of the phantoms thus, in turn, to the scatterer den-
sity (α) and scattering power (β). By contrast, the signal detected
with perpendicular polarization contained only light from deep
regions inside the phantom, which was expected to be sensitive
to the absorption properties of the phantoms due to the long opti-
cal path length and to total hemoglobin concentration (CtHb) and
hemoglobin oxygenation (StO2). The sample was viewed by the
camera right above, along the normal axis of the sample surface.
A computer was connected to the camera to acquire the images
of the sample, which contained the wide-band color measure-
ments. Among these tissue parameters, hemoglobin concentra-
tion and oxygen saturation together determine the absorption
coefficient spectrum according to Beer’s law, whereas the scat-
tering amplitude and scattering power together determine the
reduced scattering coefficient μ 0

s for the whole visible spectrum
(λ) by the following empirical equation:20,21

μ 0
sðλÞ ¼ αλ−β: (1)

The spectra of absorption and scattering coefficients together
with the configuration of optical measurements determine the
diffuse reflectance spectrum. After passing through the RGB
(i.e., Red, Green, and Blue) filters, the diffuse reflectance spec-
trum is transformed to RGB values, as shown in Eq. (2):

C ¼ FS; (2)

where C is the RGB responses, F represents the transmission
spectra of RGB filters, and S is the diffuse reflectance spectrum.
Therefore, the RGB responses and their ratios are determined by
these tissue parameters and, therefore, contain the information
of all the tissue parameters. A pH meter and thermometer (HI
9024, Sigma-Aldrich, St. Louis, Missouri) and a dissolved oxy-
gen meter (HI 9142, Sigma-Aldrich, St. Louis, Missouri) were
used to measure the pH value, temperature, and oxygen level in
the phantom sample, respectively, which were used to derive
hemoglobin oxygenation. The relative emission spectrum of
the white light source, the relative spectral response of the
3-CCD, and the transmittance of the polarizers are shown
in Fig. 2.

2.2 Phantom Preparation

The optical properties of tissue phantoms were selected to
mimic human skin, in which hemoglobin served as the absorber
and polystyrene spheres served as scatterers.

Fig. 1 Schematic of the color imaging system with devices measuring
pH and dissolved oxygen in the sample. The red lines with arrows
represent light flow.
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In total, 162 liquid phantoms with three different hemoglobin
concentrations, polystyrene spheres with two different scatterer
sizes and three different volume concentrations, and nine differ-
ent hemoglobin oxygenations were measured. The three concen-
trations of hemoglobin (H0267, Sigma-Aldrich, St. Louis,
Missouri) were 3.9, 19.4, and 38.8 μM, which correspond to
absorption coefficients of 2.3, 11.5, and 23 cm−1 at 413 nm.
The volume concentrations of polystyrene spheres with a 1-μm
diameter (07310-1, Polysciences, Warrington, Pennsylvania)
were adjusted to achieve the scattering coefficients of 54.8,
109.6, and 253.5 cm−1 at 550 nm. The volume concentrations
of polystyrene spheres with a 0.5-μm diameter (07307-15,
Polysciences, Warrington, Pennsylvania) were adjusted to achieve
the scattering coefficients of 55.0, 110.0, and 256.6 cm−1 at
550 nm. The optical properties of the skin phantoms used in this
study were extracted from in vivo skin studies22–24 and in vitro
skin studies,25–27 in which the subjects were mostly Caucasians.
A phosphate buffer with a pH of 6.0 was used as the solvent in
the phantoms to keep a constant pH value, which maintained the
relation between the measured oxygen tension and hemoglobin
oxygenation as approximately unchanged when the temperature
was fixed.1 Hemoglobin oxygenation was varied by adding
5 mg∕ml yeast (Dry Baker’s Yeast, saf-instant, Marcq-en-
Baroeul, Cedex, France) to remove oxygen from hemoglobin.
The recorded hemoglobin oxygenation values ranged from
10% to 90% with an interval of 10%. The phantoms were con-
sistently stirred at a moderate speed on top of the magnetic stirrer
during measurements to maintain a uniform distribution of oxy-
genation and scatterer distribution. The dissolved oxygen meter
was used to monitor oxygen concentration in the phantoms.
The measured oxygen concentration was converted to hemoglobin
oxygenation by applying Henry’s law28 and Kelman’s equa-
tion29,30 with the required parameters, i.e., pH and temperature val-
ues measured by the pH meter and the thermometer. It was found
that the pH and temperature of the phantoms were maintained at
∼6.0 and 20°C, respectively, during the measurements.

2.3 Data Analysis

2.3.1 Sequential weighted WE

In traditional WE, when ignoring the noise term, the Wiener
matrix is formulated as

W ¼ E½scT%½E½ccT%%−1; (3)

where the superscript “T” represents the matrix transpose, the
superscript “−1” represents the matrix inverse, E½% represents
the ensemble average, s represents the tissue parameters, and
c represents the wide-band measurements. More details for tra-
ditional WE have been reported elsewhere.31 In the weighted
WE that we developed, the ensemble average is replaced by
the weighted average as shown in Eq. (4):

W ¼
Xn

i¼1

wisicTi
Xn

j¼1

ðwjcjcTj Þ−1; (4)

where wi or wj is the weight for the i’th or j’th set of calibration
data. This weight is calculated according to the following
equation:

wi ¼
Dm

iPn
i¼1 D

m
i
; (5)

where Di is the similarity between the tissue parameter value
estimated from the test data and the corresponding parameter
value in the i’th set of tissue parameters in the calibration
data and m is the power to adjust the contribution of Di. The
similarity Di is calculated according to Eq. (6):

Di ¼
d−1iPn
i¼1 d

−1
i

; (6)

where di denotes the difference between the tissue parameter
value estimated from the test data and the corresponding param-
eter value in the i’th set of tissue parameters in the calibration
data and m is the power to adjust the contribution of di. When
multiple estimated tissue parameters need to be included in the
weighting scheme, the corresponding similarity values will be
calculated separately according to Eq. (6) and then averaged
to yield a single similarity value. The accuracy of the estimation
can be improved by using a large number of calibration data
highly similar to the test data set. According to Eqs. (5) and
(6), any calibration data with a set of tissue parameter values
very different from the test data would yield a tiny weight,
which makes a nearly negligible contribution to the weighted
Wiener matrix by Eq. (4). According to the same equations,
a larger m generates a more effective calibration data set,
which is more similar to the test data set, than a smaller m
does. However, if m becomes too large, the weight can be

Fig. 2 (a) Relative emission spectrum of white light source, (b) relative spectral response of the 3-CCD,
and (c) transmittance of the polarizer.
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very small not only for those calibration data very different from
the test data but also for those calibration data moderately sim-
ilar to the test data by Eqs. (5) and (6). As a result, the effective
calibration data will be much less because only those very sim-
ilar to the test data are retained. Such a small set of calibration
data is likely to yield large errors in estimation when the cali-
bration data or the test data contain measurement uncertainty or
noises. Therefore, the adjustment of m is the tradeoff between
the population size of the effective calibration data and the sim-
ilarity between the calibration data set and the test data set, when
the full calibration data set is fixed. The value ofmwas fixed at 5
in this study to achieve the tradeoff. According to Eq. (4) to
Eq. (6), the summation of wi is 1, and the contribution of a
set of calibration data to the Wiener matrix is proportional to
the similarity between the estimated tissue parameters in the
test data set and the i’th set of tissue parameters in the calibration
data.

The schematic of the sequential weighted WE is shown in
Fig. 3. This method consists of multiple steps of estimation
that can be run iteratively, in which the parameters in the
order of estimation are the scattering power (β), the total hemo-
globin concentration (CtHb), the scatterer density (α), and hemo-
globin oxygenation (StO2). The estimation error of each
individual parameter when using traditional WE decreases
with this order in the calibration stage; therefore, this order
will prevent the early estimation error from propagating to
the later estimation. In the first step, the scattering power β
is extracted using a traditional WE method. Then, CtHb is esti-
mated using the weighted WE as in Eq. (4) and the weights are
calculated using Eqs. (5) and (6) according to the difference
between the β value estimated from the test data and the β values
in the calibration data. After that, α is estimated using the
weighted WE as in Eq. (4) and the weights are calculated
using Eqs. (5) and (6) according to the difference between
CtHb and β values estimated from the test data and these values
in the calibration data. Finally, StO2 is estimated using the
weighted WE as in Eq. (4) and the weights are calculated

according to the difference between CtHb, α, and β values esti-
mated from the test data and these values in the calibration data.
This completes one loop in the sequential weighted WE. If the
estimated results are not satisfactory, the loop can be run again,
in which β will be calculated again according to the weights
calculated according to the similarity between CtHb, StO2 and
α values estimated from the test data in the first loop and
those values in the calibration data. All the steps can be repeated
iteratively until the estimated results are acceptable.

2.3.2 Leave-one-out method, genetic algorithm
and evaluation criterion

The leave-one-out method32 was used for cross validation. In
this strategy, data measured from one tissue phantom are
used for testing and data measured from other tissue phantoms
are used for calibration. Then a new tissue phantom is selected
for testing and the procedure is repeated until all the tissue phan-
toms have been tested.

Because the ratios of wide-band measurements contained
important information about hemoglobin,33,34 we examined
both the absolute values of wide-band measurements and
their ratios. These two sets of data were named jointly as coef-
ficients in Table 1. A genetic algorithm was used to find the
optimal combination of the coefficients for the estimation of
each tissue parameter. The optimization methodology proceeded
in the following manner. First, a population of coefficient com-
bination was initialized randomly. Second, the traditional WE
(for comparison) or sequential weighted WE was applied to
extract the tissue parameters and the accuracy of the recovered
tissue parameters was evaluated. The accuracy was quantified
according to the relative root mean square error (RMSE) calcu-
lated from Eq. (7). Third, a new population of coefficient com-
bination was generated according to the accuracy of the
recovered tissue parameters, in which the coefficient combina-
tion yielding a higher accuracy was more likely to become the
parent of the new population. The crossover rate was 0.9 and the
mutation rate was 0.1. The second and third steps were repeated

Fig. 3 Schematic of sequential weighted Wiener estimation (WE).

Table 1 Coefficients for estimation of tissue parameters.a

Indices Coefficients

1 ∼ 12 Rk, Gk, Bk, R⊥, G⊥, B⊥, Rsum, Gsum, Bsum, Rsub, Gsub, Bsub

13 ∼ 24 Rk∕ðRk þGk þ BkÞ, Gk∕ðRk þGk þ BkÞ, Bk∕ðRk þGk þ BkÞ, R⊥∕ðR⊥ þG⊥ þ B⊥Þ, G⊥∕ðR⊥ þG⊥ þ B⊥Þ, B⊥∕ðR⊥ þG⊥ þ B⊥Þ,
Rsum∕ðRsum þGsum þ BsumÞ, Gsum∕ðRsum þGsum þ BsumÞ, Bsum∕ðRsum þGsum þ BsumÞ, Rsub∕ðRsub þGsub þ BsubÞ,
Gsub∕ðRsub þGsub þ BsubÞ, Bsub∕ðRsub þGsub þ BsubÞ

25 ∼ 36 Rk∕Gk, Rk∕Bk, Gk∕Rk, Gk∕Bk, Bk∕Rk, Bk∕Gk, R⊥∕G⊥, R⊥∕B⊥, G⊥∕R⊥, G⊥∕B⊥, B⊥∕R⊥, B⊥∕G⊥

37 ∼ 48 Rsum∕Gsum, Rsum∕Bsum, Gsum∕Rsum, Gsum∕Bsum, Bsum∕Rsum, Bsum∕Gsum, Rsub∕Gsub, Rsub∕Bsub, Gsub∕Rsub, Gsub∕Bsub,
Bsub∕Rsub, Bsub∕Gsub

aR, red value; G, green value; B, blue value; ∥, light with parallel polarization; ⊥, light with perpendicular polarization; sum, ∥ + ⊥; sub, ∥ − ⊥.
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iteratively until an optimized combination of coefficient was
found:

Relative RMSE

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1

"
i 0th estimated parameter−i 0th reference parameter

i 0th reference parameter

#
2

n

vuuut
: (7)

3 Results
Table 2 shows the relative RMSEs in the parameters estimated
using traditional WE and the sequential weighted WE relative to

the reference values. Out of four parameters estimated, i.e., CtHb,
StO2, scatterer density α, and scattering power β, the relative
RMSEs increase from the lowest to the highest for traditional
WE in the order of β, CtHb, α, and StO2, and the sequential
weighted WE performs estimations in the same sequence as
shown in Fig. 3. The first weighted WE denotes the sequential
weighted WE with only one iteration and the second weighted
WE denotes the sequential weighted WE with two iterations.
The relative RMSEs in estimated tissue parameters after the
first-iteration weighted WE are 71.0%, 22.2%, 19.9% and
92.7% of those after traditional WE for CtHb, StO2, α, and β,
respectively. The relative RMSEs after the second-iteration
weighted WE are 24.1%, 96.5%, 94.4% and 49.3% of those
after the first weighted WE for the same parameters. The
decreases in the relative RMSEs of parameters indicate that
the sequential weighted WE improves the estimation as the
number of iteration increases.

Figure 4 graphically shows the comparison between esti-
mated parameters and reference parameters in the traditional
WE and sequential weighted WE. It is observed that the markers
representing the weighted WE stay much more packed and
closer to the ideal lines than those representing the traditional
WE, which suggests that the weighted WE, especially after
two iterations, is more effective in the quantification of these
parameters.

The best combination of coefficients for estimating CtHb,
StO2, α, and β in the traditional WE, the first-iteration weighted
WE, and the second-iteration weighted WE are shown in

Table 2 Relative RMSEs in the parameters estimated using tradi-
tional WE and sequential weighted WE relative to the reference
values.

Traditional
WE

First-iteration
weighted WE

Second-iteration
weighted WE

Relative RMSE in CtHb 0.1681 0.1193 0.0287

Relative RMSE in StO2 1.2712 0.2825 0.2726

Relative RMSE in α 0.2517 0.0501 0.0473

Relative RMSE in β 0.0151 0.0140 0.0060

Fig. 4 (a) Total hemoglobin concentration CtHb, (b) hemoglobin oxygenation StO2, (c) scatterer density α,
and (d) scattering power β estimated using the traditional WE and weighted WE as a function of the
expected value. The legend “1st weighted” means the result after the first iteration of weighted WE
and the legend “2nd weighted” means the result after the second iteration of weighted WE.
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Table 3. It is interesting to observe that not only the best combi-
nation but also the number of coefficients in the best combina-
tion change from the traditional WE to the weighted WE as well
as from the first iteration to the second iteration in the
weighted WE.

4 Discussion
According to Table 2 and Fig. 4, all the estimated parameters
show significant improvement when using the sequential
weighted WE. The traditional WE fails to recover the StO2,
whereas the sequential weighted WE shows good performance
for the recovery of StO2. The improvement can be attributed to
the optimal selection of the calibration data set, in which a
more appropriate Wiener matrix is created compared with the

traditional WE. In addition, with the increasing number of iter-
ations in the sequential weighted WE, all the estimated param-
eters show improved accuracies. This is due to the better choices
of weights used in Eqs. (4) to (6), i.e., more contribution from
the calibration data with a higher similarity to the test data,
which means a more appropriate Wiener matrix can be created.
However, more iterations require more computation time, thus a
trade-off is needed between the estimation accuracy and the time
cost in a clinical application.

In all the data shown up to this point, the similarity values
calculated separately for each parameter according to Eq. (6)
were averaged to represent the similarity of the multiple param-
eters in each set of data. We also evaluated the possibility of
using the multiplication of individual similarity values instead

Table 3 The best combination of coefficients for estimating CtHb StO2, α and β in traditional WE, the first-iteration weighted WE and the second-
iteration weighted WE.

Traditional WE First-iteration weighted WE Second-iteration weighted WE

CtHb Bk, R⊥, Rsum, Rk∕ðRk þGk þ BkÞ,
Rsum∕ðRsum þGsum þ BsumÞ,
Gsum∕ðRsum þGsum þ BsumÞ,
Gsub∕ðRsub þGsub þ BsubÞ,
Bk∕Gk, Gsum∕Rsum, Rsub∕Gsub,
Bsub∕Gsub

Rk, Bk, R⊥∕ðR⊥ þG⊥ þ B⊥Þ,
R⊥∕G⊥, R⊥∕B⊥, G⊥∕R⊥, G⊥∕B⊥,
B⊥∕R⊥, Rsum∕Bsum, Bsum∕Gsum

R⊥∕ðR⊥ þG⊥ þ B⊥Þ,
G⊥∕ðR⊥ þG⊥ þ B⊥Þ, R⊥∕G⊥

StO2 Rk, R⊥, Rsum, Bsum, Rsub, Bsub,
Rk∕ðRk þGk þ BkÞ,
Bsum∕ðRsum þGsum þ BsumÞ,
Gk∕Rk, G⊥∕B⊥

Rsum, Bsum, Rsum∕ðRsum þGsum þ BsumÞ,
Gsum∕ðRsum þGsum þ BsumÞ,
Bsum∕ðRsum þGsum þ BsumÞ, Gsum∕Rsum,
Bsum∕Rsum

Bsum, Rsum∕ðRsum þGsum þ BsumÞ,
G⊥∕R⊥, Gsum∕Bsum

α R⊥, Bsum, Gsub, Gk∕ðRk þGk þ BkÞ,
G⊥∕ðR⊥ þG⊥ þ B⊥Þ,
Bsub∕ðRsub þGsub þ BsubÞ, Rk∕Gk,
Rsum∕Gsum, Gsum∕Bsum, Rsub∕Bsub,
Gsub∕Bsub

Rsum, Bsum, Rk∕ðRk þGk þ BkÞ,
Bk∕ðRk þGk þ BkÞ, R⊥∕ðR⊥ þG⊥ þ B⊥Þ,
Gsum∕ðRsum þGsum þ BsumÞ,
Rk∕Gk, Bk∕Gk, Bsum∕Rsum, Bsum∕Gsum

Bk, R⊥, Gsum, Bsum,
R⊥∕ðR⊥ þG⊥ þ B⊥Þ,
G⊥∕ðR⊥ þG⊥ þ B⊥Þ,
Rsum∕ðRsum þGsum þ BsumÞ;
Gsub∕ðRsub þGsub þ BsubÞ,
Gsub∕ðRsub þGsub þ BsubÞ,
R⊥∕G⊥, G⊥∕R⊥,
Bsum∕Rsum, Rsub∕Gsub

β Rsum, Rsub, R⊥∕ðR⊥ þG⊥ þ B⊥Þ,
Rsum∕ðRsum þGsum þ BsumÞ,
Bsum∕ðRsum þGsum þ BsumÞ;
Rsub∕ðRsub þGsub þ BsubÞ,
Rsub∕ðRsub þGsub þ BsubÞ,
Gsub∕ðRsub þGsub þ BsubÞ,
Bsub∕ðRsub þGsub þ BsubÞ,
Gsub∕Rsub, Gsub∕Bsub, Bsub∕Rsub,
Bsub∕Gsub

Rk, Gk∕ðRk þGk þ BkÞ,
Gsum∕ðRsum þGsum þ BsumÞ;
Bsub∕ðRsub þGsub þ BsubÞ,
Bsub∕ðRsub þGsub þ BsubÞ, Rk∕Gk,
R⊥∕G⊥, Rsum∕Gsum, Rsum∕Bsum,
Gsum∕Rsum, Rsub∕Gsub, Gsub∕Bsub

Rk, Rk∕ðRk þGk þ BkÞ,
Bk∕ðRk þGk þ BkÞ,
B⊥∕ðR⊥ þG⊥ þ B⊥Þ,
Bsum∕ðRsum þGsum þ BsumÞ;
Gsub∕ðRsub þGsub þ BsubÞ,
Gsub∕ðRsub þGsub þ BsubÞ,
Gk∕Rk, Gk∕Bk, Rsub∕Gsub,
Bsub∕Rsub, Bsub∕Gsub

Table 4 Relative RMSEs in the parameters estimated using sequential weighted WE based on averaging and multiplication for the similarity
indicator of multiple parameters.

First-iteration weighted
WE (averaging)

Second-iteration weighted
WE (averaging)

First-iteration weighted
WE (multiplication)

Second-iteration weighted
WE (multiplication)

Relative RMSE in CtHb 0.1193 0.0287 0.1193 0.0151

Relative RMSE in StO2 0.2825 0.2726 0.2978 0.3070

Relative RMSE in α 0.0501 0.0473 0.0430 0.0421

Relative RMSE in β 0.0140 0.0060 0.0065 0.0030
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of the averaging of them to generate a single similarity indicator
for the multiple parameters in each set of data as shown in
Table 4, in which multiplication was found to yield a faster con-
vergence than averaging. The results in Table 4 show significant
improvement on the estimation of CtHb and β, a slight improve-
ment in the estimation of α, and a slight degradation in StO2

estimation accuracy.
According to Table 3, all the combination of parameters con-

tains ratio values of wide-band measurements, which confirms
the importance of ratio values for the recovery of all tissue
parameters. However, there is no obvious preference in the
polarization state of light and/or specific ratio values for the
recovery of any individual tissue parameter. The possible reason
is that although a certain coefficient is more important for a
given tissue parameter, information from other coefficients is
still needed for accurate estimation in this particular imaging
setup. For example, the scattering properties including α and
β are generally considered to be more sensitive to the measure-
ments in parallel polarization that involves most contribution
from the shallow sample volume. In principle, the measurements
in perpendicular polarization should not appear in the optimal
combination of coefficients for estimating the scattering proper-
ties. However, the small detector, which is determined by the
pixel size of the camera in this imaging setup, could break
this principle since a small detector also preferentially detects
signals from the shallow sample volume. As a result, multiple
coefficients involving the measurements of perpendicular
polarization are also included in the optimal combination for
estimating the scattering properties, α and β, in Table 3.
Interestingly, only the measurements of perpendicular polariza-
tion or the sum of measurements in both polarizations show up
in the optimal combination for estimating CtHb and StO2. The
excellent performance of the sequential weighted WE can be
attributed to two factors. One factor is that the proposed method
based on WE takes advantage of prior information about the
samples contained in the Wiener matrix.35 The Wiener matrix
is created in the calibration stage, in which the tissue parameters
measured from similar samples are used and associated with
color measurements. The other factor is that the sequentially
introduced weights yield an optimal calibration data set for
each sample, thus a more appropriate Wiener matrix is created.
This is also an advantage compared with the previous approach
for the same problem,15 in which fixed scattering coefficients
and anisotropy factors were used. Because the color measure-
ments are influenced jointly by all tissue parameters, the estima-
tion of one particular tissue parameter, especially StO2, which is
essentially done by comparison between the test data and the
similar data in the calibration data set, can be easily hindered
by a small perturbation or error in other tissue parameters. In
this situation, the calibration data set created by the weighting
step in the sequential weighted WE, which is more similar to the
test data than the raw calibration data set, will yield a Wiener
matrix that is more robust to perturbation in the color measure-
ments or other tissue parameters. Moreover, it is adaptive to dif-
ferent test data. Compared with the sequential weighted WE, the
traditional WE only needs to create the Wiener matrix once.
Therefore, the computing time for the sequential weighted
WE is around 50 times of that for the traditional WE in this
study. However, this problem could be solved by the prior cal-
culation of the weighted Wiener matrix, which can be stored in a
database according to the corresponding weights. When certain
weights appear, the Wiener matrix can be directly retrieved

from the database and the computing time can be reduced
dramatically.

Although the use of the calibration data set is a potential limi-
tation of this method, it should be pointed out that the calibration
data set is often available in most biomedical applications. This
fact has been utilized in many earlier researches in medical diag-
nostics.36,37 However, when a totally new system (with a new
light source and/or a new color CCD) is used, the instrument
to instrument difference can degrade the estimation accuracy,
since the calibration data set and the test data set were measured
by using different systems. The problem can be solved by con-
verting the RGB values into the CIE (International Commission
on Illumination) XYZ color space. The CIE XYZ color space is
a device-independent color space.38 The RGB values are trans-
formed to CIE XYZ values by a transform matrix T as shown in
Eq. (8):
2

4
X
Y
Z

3

5 ¼ T

2

4
R
G
B

3

5: (8)

The transformation matrix T is dependent on the imaging
system, which can be determined according to the measure-
ments of a standard color chart using the imaging system. The
standard color chart is supplied commercially with the corre-
sponding CIE XYZ values. When the imaging system is
changed, one just needs to obtain a new transformation matrix
T by measuring the standard color chart again. The new trans-
formation matrix will then be used to convert all color measure-
ments from other samples to the CIE XYZ values; this process is
device independent, thus it would be consistent regardless of the
imaging system. This method will solve the problem of switch-
ing the imaging system from one to another. The detailed infor-
mation of this method can be found in a published paper.14 For
color reading variation due to factors other than the system, for
example, the slight variation in the imaging distance or angle, a
single standard measurement can be applied to simplify the cal-
ibration step. The standard measurements are the measurements
of a diffuse reflectance standard by using the current system and
the new system. The color response can be corrected using
Eq. (9):

C 0 ¼ Cnew

Scur
Snew

; (9)

where C 0 is the corrected color measurements, Cnew is the color
measurements from the new system, and Scur and Snew are the
standard measurements using the current system and new sys-
tem, respectively. After the correction, the calibration data set
acquired by the current system can be still used and the original
Wiener matrix would remain effective. Another estimation
degradation factor from ambient light could be reduced by
subtracting the background measurement from any sample
measurement. For every sample measurement, a subsequent
background measurement was taken immediately and then sub-
tracted from the sample measurement, which has been shown
effective in reducing the influence of ambient light.

Compared with diffuse reflectance spectroscopy-based meth-
ods, the results for traditional WE do look worse. However, the
sequential weighted WE improved the relative RMSEs over tra-
ditional WE by an average of 4.6 fold, ranging from 0.6% to
27%. The relative RMSEs generated by the sequential weighted
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WE are comparable to the typical performance of diffuse reflec-
tance spectroscopy-based methods,2,4,39,40 in which the relative
RMSEs were approximately ranged from 1% to 15%. Although
optical spectroscopy for tissue characterization in a point meas-
urement setup has been investigated intensively to derive key
tissue parameters for a couple of decades, color imaging for
the same purpose has not been fully explored, which is evident
from the limited number of relevant publications. Compared to
the point measurement setup, we anticipate that our method will
be advantageous in the speed of data acquisition when employed
for extraction of tissue parameters in a large field of view and
high spatial resolution. In addition, the color imaging setup
acquires images much faster than those more expensive spectral
imaging setups. Our method requires only one color image
based on which tissue parameters at each pixel can be recon-
structed. Therefore, it may allow noninvasive and real-time
monitoring of tissue parameters in a large tissue area to inves-
tigate fast changing phenomena.

The proposed method can be used in the clinical setting for
various applications such as the assessment of skin viability.
This study is a pilot study to verify the feasibility of tissue
parameter extraction from RGB responses and their ratios
and the efficiency of the proposed estimation algorithm.
Therefore, a simplified phantom model was selected. Based
on the feasibility of this study, the calibration data may need
to be obtained from a more realistic tissue phantom model in
clinical applications. For example, a series of two-layered
skin phantoms including melanin in the epidermis with a
range of epidermal thicknesses and optical properties in both
layers will yield a better set of calibration data for clinical mea-
surements. Since such a multilayered phantom will contain
many more parameters, a different optical system such as the
depth-sensitive multifocal color imaging system developed by
our group41 and a sequential estimation method42 will be needed
to selectively acquire color images from each layer to improve
the accuracy of each estimated parameter. Although the addi-
tional melanin content could affect the color response and in
turn the final estimation result, we believe that such an effect
would be negligible if part of the calibration data set contains
a similar melanin content. According to our previous experi-
ment, the average relative RMSE of CtHb, α and StO2 would
increase from 7.7% to 11.6% if the scattering power β was
included as one free parameter instead of a known parameter.
Therefore, it is expected that the average RMSE of other param-
eters may change in a similar trend with melanin concentration
as an additional free tissue parameter. Considering the volume
fraction range of melanin (1 to 3%) in the epidermis of the light
skin43 and the ratio (15%) between the epidermal thickness44

and the typical penetration depth of our system, the total absorp-
tion coefficient of the skin may vary from 0.7 to 2.2 cm−1 at
550 nm due to the volume fraction variation in melanin.
According to the semiempirical model,45 the absorption coeffi-
cient variation can be converted to a decrease of around 20% in
diffuse reflectance intensity at 550 nm and the same percent
changes in R, G, and B color values on average. Such a decrease
in the R, G, and B color values may yield an increase of about
3% in the relative RMSE according to the relationship between
the effective signal to noise ratio and the relative RMSE we esti-
mated (results not shown). Because the optical properties of
phantoms were extracted mainly from Caucasians, it is recom-
mended to create a separate calibration dataset for each different
skin type, for example, skin type I-VI.46 In this manner, the

influence of color changes caused by melanin in different
skin types on the proposed method will be minimized.

Besides diffuse reflectance imaging, this method can be
extended to fluorescence or Raman imaging to extract the con-
centrations of fluorophores or Raman scatterers. Fluorescence or
Raman spectral measurements can be replaced by multiple
wide-band or narrow-band measurements to enhance the signal
to noise ratio and speed up data acquisition. This has been dem-
onstrated previously for spontaneous Raman spectra31 in which
the full Raman spectrum was reconstructed from multiple nar-
row-band measurements with small RMSEs.

5 Conclusion
In this study, we developed a method of sequential weightedWE
to estimate key tissue parameters including total hemoglobin
concentration (CtHb), hemoglobin oxygenation (StO2), scatterer
density (α), and scattering power (β) from wide-band color mea-
surements. Tissue phantoms with varying oxygenation were
measured to evaluate this method. The estimated tissue param-
eters show excellent agreement with the reference values.
Compared with the traditional WE, the sequential weighted
WE shows significant improvement, especially for hemoglobin
oxygenation. Moreover, the new method allows the estimation
of the scattering properties, which overcomes the limitation of
assuming known scattering properties or fixed scattering proper-
ties in the previous reports. This method is fast, thus it may
allow real-time monitoring of key tissue parameters in a large
tissue area when combined with color imaging. A future
study will be conducted on a more complex multilayered phan-
tom with both melanin and hemoglobin as the absorbers.
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