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Abstract: Raman spectroscopy is a powerful non-destructive technique for 
qualitatively and quantitatively characterizing materials. However, noise 
often obscures interesting Raman peaks due to the inherently weak Raman 
signal, especially in biological samples. In this study, we develop a method 
based on spectral reconstruction to recover Raman spectra with low signal-
to-noise ratio (SNR). The synthesis of narrow-band measurements from 
low-SNR Raman spectra eliminates the effect of noise by integrating the 
Raman signal along the wavenumber dimension, which is followed by 
spectral reconstruction based on Wiener estimation to recover the Raman 
spectrum with high spectral resolution. Non-negative principal components 
based filters are used in the synthesis to ensure that most variance contained 
in the original Raman measurements are retained. A total of 25 agar 
phantoms and 20 bacteria samples were measured and data were used to 
validate our method. Four commonly used de-noising methods in Raman 
spectroscopy, i.e. Savitzky-Golay (SG) algorithm, finite impulse response 
(FIR) filtration, wavelet transform and factor analysis, were also evaluated 
on the same set of data in addition to the proposed method for comparison. 
The proposed method showed the superior accuracy in the recovery of 
Raman spectra from measurements with extremely low SNR, compared 
with the four commonly used de-noising methods. 
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1. Introduction 

Raman spectroscopy is a laser-based spectroscopic technique that exploits Raman scattering 
for qualitative or quantitative biological material characterization [1]. Rich biochemical 
information can be revealed from resulting Raman shifts, which depend on the specific 
vibrational modes of molecules in tissues and cells [2]. Therefore, Raman spectra or peaks 
inside could be employed to differentiate biological components. This method has shown 
great potential in many biomedical applications [3, 4]. Unfortunately, such applications are 
often hampered by inherently weak Raman signals from biological molecules [5]. In this case, 
measurement noises obscure Raman peaks of interest rendering a low signal-to-noise ratio 
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(SNR) [6]. It is common to solve this problem by increasing the power of the excitation laser 
and/or exposure time. However, these methods cannot be used when measuring unstable 
materials or observing fast changing phenomena. Therefore, it is important to develop a 
method to quickly recover Raman spectra with low SNR without increasing laser power. 

Smoothing and filtering are two common categories of de-noising methods in Raman 
spectroscopy [7]. Savitzky-Golay (SG) algorithm is one of the most frequently used 
smoothing methods to de-noise Raman spectra [8], in which each segment of the original 
Raman spectrum in a small window is smoothed by fitting it to a polynomial function [9]. 
When the window size is small, the smoothing outcome will be poor. When the window size 
is large, the spectral resolution will degrade and those weak spectral features will be distorted. 
A tradeoff needs to be made between the smoothing outcome and the spectral resolution by 
appropriately choosing the window size and the order of the polynomial function. In contrast, 
finite impulse response (FIR) filtration [7], wavelet transform [10, 11] and factor analysis 
[12], are commonly used filtering techniques for Raman de-noising. FIR filtration offers 
excellent preservation of the spectral shape, but it is demanding in computation. In the 
technique of wavelet transform, spectral data are decomposed into the wavelet domain and 
reconstructed after thresholding for noise removal. Currently, the selection of wavelet filters, 
threshold and other parameters in wavelet transform is strongly problem dependent [11]. In 
factor analysis, acquired spectra are projected into the orthonormal set of subspectra by 
singular value decomposition. The original spectral information is maintained by the linear 
combination of optimized number of subspectra with large singular values. The subspectra 
with small singular values (usually below 0.5% of the maximal value) are treated as white 
noise [13]. The method will lose the ability to decompose the signal and the noise when the 
SNR is low, because the noise would have comparable or even more contribution to the 
acquired spectra compared to the signal. 

In our previous study [14], we have successfully reconstructed the Raman spectra of cells 
and biological fluid from narrow-band measurements using the WE method without 
sacrificing spectral resolution. In this study, we propose the reconstruction of Raman spectra 
from narrow-band measurements based on Wiener estimation (WE) method as an alternative 
method to denoise Raman spectra with low SNR. By synthesizing narrow-band measurements 
from low-SNR spectra, the integration along the wavenumber dimension in the synthesis 
reduces the effect of noise. Then the narrow-band measurements are used to reconstruct high-
SNR spectra based on Wiener estimation. To our best knowledge, this is the first time that 
spectral reconstruction involving Wiener estimation is used to recover the high-SNR Raman 
spectra from narrow-band measurements that were synthesized from low-SNR Raman 
measurements. Although traditional Wiener filtration for noise reduction and spectral 
reconstruction based on Wiener estimation have been performed separately before, our 
method is different from either one of them. In traditional Wiener filtration, narrow-band 
measurements are never synthesized and the Wiener filter is directly applied to a signal with 
the additive noise. In the traditional spectral reconstruction based on Wiener estimation, there 
is no previous study in which narrow-band measurements are synthesized from low-SNR 
Raman spectra to recover the corresponding high-SNR Raman spectra. So the traditional 
spectral reconstruction based on Wiener estimation is not able to de-noise the spectra. 

More specifically, we systematically investigated the recovery of Raman spectra from 
Raman measurements with low SNR obtained by using a series of short exposure time values 
during spectral acquisition, in which Raman spectra with high SNR obtained using a long 
exposure time served as the reference measurement for comparison. Narrow-band 
measurements synthesized from Raman spectra with low SNR using a set of non-negative 
principal components (PCs) based filters were used to reconstruct Raman spectra with high 
SNR by Wiener estimation. The choice of non-negative PCs based filters in the process 
ensures that most variance contained in the original Raman measurements are retained. The 
method was validated on Raman spectra measured from 25 phantoms with two different 
Raman scatterers, i.e. urea and potassium formate, at different concentrations and 20 Raman 
spectra measured from bacteria samples. Four commonly used Raman de-noising methods, 
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i.e. SG algorithm, FIR filtration, wavelet transform and factor analysis, were evaluated on the 
same sets of Raman spectra for comparison. According to the results, the agreement between 
the Raman spectra recovered by WE method and the reference Raman spectra was 
significantly better than the four common de-noising methods. Therefore our method 
represents an effective alternative to recover Raman spectra from samples with intrinsically 
low Raman efficiency or those acquired in short time from fast changing phenomena thus 
with low SNR. 

2. Materials and methods 

2.1 Principle of Wiener estimation for recovery of Raman spectra 

Wiener estimation [15, 16] is used to recover Raman spectra from low-SNR Raman 
measurements and results are compared to the reference Raman spectra with high SNR. The 
low SNR Raman measurements are collected from a sample with short exposure time and 
single accumulation, while the corresponding reference Raman spectra with high SNR are 
collected from the same sample with long exposure time and multiple accumulations. 

In the recovery process, there are two data sets involved, i.e. the calibration data set and 
test data set. The calibration data set contains both Raman measurements with low SNR and 
the corresponding reference Raman measurements with high SNR. In the test data set, only 
Raman measurements with low SNR are present. 

The role of the calibration data set is to yield the Wiener matrix [17] when ignoring noise 
term according to Eq. (1) below. 

 T 1W E( )[E( )]T
high cal cal calS C C C −=   (1) 

where W is the Wiener matrix, Shigh is the reference Raman measurements with high SNR and 
Ccal is the narrow-band measurements synthesized from Raman measurements with low SNR 
in the calibration data set. 

Narrow-band measurements Ccal are synthesized from the Raman measurements with low 
SNR in the calibration data set using non-negative PCs based filters that were generated using 
a published method [18] according to Eq. (2) below. 

 lowC FS= (2) 

where C (n × 1 matrix) is the synthesized narrow-band measurements, F (n × m matrix) is the 
transmission spectrum of non-negative PCs based filters and Slow (m × 1 matrix) is the Raman 
spectrum with low SNR. Note that m is the number of discrete wavenumbers in the Raman 
spectrum and n is the number of filters in synthesized narrow-band measurements. 

Then the recovery of Raman spectra from a set of Raman measurements with low SNR in 
the test data set is achieved according to Eq. (3) below. 

 
^

high testS WC=  (3) 

where 
^

highS  (m × 1) is the recovered Raman spectrum with high SNR and Ctest is the narrow-
band measurements synthesized according to Eq. (2) from Raman measurements with low 
SNR in the test data set. 

The leave-one-out method [19] is used for cross validation in our study to fully utilize all 
samples in an unbiased manner. In this strategy, one sample is selected as the test data set and 
the rest of samples serve as the calibration data set. The procedure is repeated until all the 
samples have been tested. 

2.2 Sample preparation and measurements 

Two sets of samples were used to validate our method, which includes 25 phantom samples 
and 20 bacteria samples. The tunability in the composition of phantoms and the concentration 
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of each Raman scatterer in the phantoms makes the phantom study ideal in quantitative 
evaluation. Bacteria samples were used because the Raman signal from bacteria is weak even 
with a long exposure time thus it is an excellent target to demonstrate the effectiveness of the 
recovery of Raman spectra with low SNR using the proposed method. 

The phantoms were made by mixing urea (V3171, Promega corporation, US) and 
potassium formate (294454-500G, Sigma-Aldrich, US) in 1.5% agar (PC0701-500G, Vivantis 
Technologies, US) dissolved in distilled water. The concentrations for both urea and 
potassium formate under investigation included 0.25 M, 0.5 M, 1 M, 1.5 M and 2 M. Raman 
spectra with both low SNR and high SNR were measured over a range from 600 cm−1 to 1800 
cm−1, by using a micro-Raman system (innoRam-785S, B&W TEK, US) coupled to a video 
microscope sampling system (BAC151A, B&W TEK, US). The excitation wavelength was 
785 nm and the spectral resolution was 4 cm−1. The exposure time for Raman spectra with 
low SNR was 50 ms and each spectrum was accumulated for once, while the exposure time 
for Raman spectra with high SNR was 10 s and each spectrum was accumulated for 30 times. 

The bacterial samples, including Pseudomonas aeruginosa (ATCC 9027) and 
Staphylococcus aureus (ATCC 29213), was grown overnight in Tryptic Soy Agar Plates 
(TSA) at 35 °C. Few colonies were picked up and suspended in Phosphate Buffered Saline 
(PBS) to a concentration of 1 × 108 CFU/ml, which were then concentrated by centrifuging at 
10,000 rpm for five minutes and the supernatant was discarded. After that, the bacteria 
sample was washed twice in 1 mL distilled water to remove any culture media and finally 
suspended in 100 μL distilled water. The suspended samples with a volume of 2 μL were 
repeatedly dropped at the same position on an aluminum foil for five or ten times to create 
rounded areas with different bacteria concentrations. Five pairs of Raman spectra, one with 
low SNR and the other with high SNR in each pair, were measured over a range from 600 
cm−1 to 1600 cm−1 from five different locations in each rounded area. Among these five 
locations picked randomly, three of them were located at the edge and two at the center of the 
drop in each rounded area to account for the variability in bacteria concentration. This 
procedure of sample preparation and Raman measurements were repeated for a total of four 
times to generate 20 pairs of Raman spectra. Raman measurements were performed using a 
micro-Raman system (inVia, Renishaw, UK) coupled to a microscope (Alpha 300, WITec, 
Germany) in a backscattering setup. The excitation wavelength was 633 nm and the spectral 
resolution was 2 cm−1. The exposure time for Raman spectra with low SNR was 1 s and each 
spectrum was accumulated for once only, while the exposure time for Raman spectra with 
high SNR was 10 s and each spectrum was accumulated for 30 times. In addition, Raman 
spectra with an exposure time of 5 s or 10 s and accumulation of once were measured for 
comparison. 

In order to quantify the noise level of the Raman spectra with low SNR in this study, the 
SNR was defined as follows in Eq. (4). 

 SNR =
s

σ
  (4) 

where s is the largest peak intensity of the reference Raman spectrum (with high SNR) 
divided by a scaling coefficient and σ is the root mean square deviation between the low-SNR 
Raman spectrum and the scaled reference Raman spectrum in the entire spectral range. The 
scaling coefficient is obtained by dividing the sum of all the intensity values in the reference 
Raman spectrum by that in the corresponding low-SNR Raman spectrum. Due to the 
significant pixel bias, which refers to the detector reading independent of exposure time [20], 
of the Raman system used in phantom experiments, pixel bias correction was conducted in 
phantom spectra before SNR calculation. Note that the pixel bias issue was insignificant in 
the Raman system used in bacteria measurements thus no correction was performed before 
SNR calculation for the bacteria data. The pixel bias value for any given phantom spectrum 
was extracted from the linear fitting between the sums of all intensity values in the reference 
Raman spectra and those in the corresponding low SNR Raman spectra. The traditional SNR 
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is equivalent to the average peak height (usually above the baseline) divided by the standard 
deviation of the peak height [21]. The numerator, s, in Eq. (4) is the same as the average peak 
height in the traditional definition of SNR. The denominator of Eq. (4), σ, is equivalent to the 
standard deviation of the peak height in the traditional SNR because the peak intensity is 
nearly on the same level as the background intensities in low-SNR Raman measurements as 
shown in Fig. 1(a) and 2(a). 

2.3 Evaluation of SG algorithm, FIR filtration, wavelet transform and factor analysis 

Four de-noising methods were used to recover Raman spectra from low-SNR Raman 
measurements for comparison. Optimal accuracy was found by selecting the best combination 
of parameters. For SG algorithm, the frame size was varied from 3 to the maximum odd 
number that was smaller than or equal to the number of data points in each spectrum. The 
polynomial degree was varied from 1 to 9. For FIR filtration, the window size was varied 
from 2 to an integer smaller than or equal to 1/3 of the number of data points in each 
spectrum and the cutoff frequency was ranged from 1 × 10−10 to 1. For wavelet transform, 
although there exist improved wavelet transform methods [10, 22], the relevant codes are not 
publically available. Therefore only the basic wavelet transform, which can be implemented 
using built-in functions in Matlab, was used. Common wavelet filters built in Matlab were 
tested and the level of decomposition was varied from 1 to 10. The thresholds were selected 
according to Birge-Massart strategy [23, 24] and both soft and hard thresholding were 
evaluated. For factor analysis, the number of subspectra used for linear combination was 
varied from 1 to the maximum value possible [12, 13]. 

The criterion used to define the accuracy of recovered Raman spectra in this study was the 
relative root mean square error (RMSE), which was formulated as in Eq. (5) 

 

1/2N
2

1
2

[ ( ) ( )]
Relative RMSE

N {max[ ( )]}

low i high i
i

high i

R R

R

λ λ

λ
=

 − 
 =

× 
  


 

 (5) 

where Rlow is the Raman signal (normalized with or without removing fluorescence 
background) reconstructed from the measured Raman spectrum Slow using Wiener estimation 
as shown in Eqs. (1)-(3), Rhigh is the Raman signal (normalized with or without removing 
fluorescence background) computed from the reference Raman signal Shigh, λi is the i-th 
wavenumber (i is varied from 1 to N) and the function max[] returns the maximum intensity 
in the input spectrum. The fluorescence background was removed by fitting the original 
spectrum to the fifth order polynomial and subtracting the fitted spectrum from the original 
one [25]. The spectrum was then normalized by dividing the intensity at each wavenumber by 
the sum of the intensities at all wavenumbers. 

3. Results 

Figure 1 shows (a) Raman spectra with low SNR, (b) reference Raman spectra with high SNR 
measured from phantoms and (c) first three non-negative PCs based filters generated from the 
reference Raman spectra. Figure 2 shows (a) Raman spectra with low SNR, (b) reference 
Raman spectra with high SNR measured from bacteria samples and (c) first six non-negative 
PCs based filters generated from the reference Raman spectra. It should be noted that these 
are raw spectra without going through background removal. For both phantoms and bacteria 
samples, the Raman spectra with low SNR are much noisier than reference Raman spectra 
and Raman peaks are overwhelmed by noise. The mean SNR of Raman spectra with low SNR 
for phantom samples is 6.02, while the mean SNR of Raman spectra with low SNR for 
bacteria samples is 0.98. Although the exposure time for bacteria samples (1 s) is longer than 
the exposure time for phantoms (50 ms), the bacteria samples show worse SNR due to the 
intrinsically weak Raman signal from bacteria. 
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(a) 

(b) 

(c)  

Fig. 1. (a) Raman spectra with low SNR and (b) reference Raman spectra with high SNR 
measured from 25 phantoms and (c) non-negative PCs based filters’ transmittance spectra 
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(a) 

(b) 

(c)  

Fig. 2. (a) Raman spectra with low SNR (b) reference Raman spectra with high SNR measured 
from bacteria samples and (c) non-negative PCs based filters’ transmittance spectra 

Table 1. Comparison in the mean relative RMSE of Raman spectra of phantoms (after 
fluorescence background removal and normalization) recovered/smoothed from low-

SNR Raman measurements using SG algorithm, FIR filtration, wavelet transform, factor 
analysis and WE method 

 SG algorithm FIR filtration Wavelet 
transform 

Factor analysis WE method 

Mean relative 
RMSE 1.07 × 10−1 1.09 × 10−1 1.02 × 10−1 1.06 × 10−1 1.99 × 10−2 

Table 1 shows the comparison in the mean relative RMSE of reconstructed/smoothed 
Raman spectra (after removing fluorescence background and normalization as described in 
the Materials and Methods section) from phantoms using SG algorithm, FIR filtration, 
wavelet transform, factor analysis and WE method. The mean relative RMSE for WE method 
is only 18.6%, 18.3%, 19.5% and 18.8% of those for SG algorithm, FIR filtration, wavelet 
transform and factor analysis, respectively. Figure 3 shows the comparison of the reference 
Raman spectrum and the Raman spectra recovered/smoothed from low-SNR Raman 
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measurements using SG algorithm, FIR filtration, wavelet transform, factor analysis and WE 
method in the typical case, in which the relative RMSE is close to the mean value. 

	

	

(a) (b) 

(c) 

(e) 

(d) 

 

Fig. 3. Comparison of the reference Raman spectra from phantoms and the corresponding 
spectra recovered from low-SNR Raman measurements using (a) SG algorithm, (b) FIR 
filtration method, (c) wavelet transform, (d) factor analysis and (e) WE method, in which the 
relative RMSE is close to the mean value. Fluorescence background has been removed and 
spectra have been normalized. 

Table 2. Comparison in the mean relative RMSE of Raman spectra of bacteria samples 
(after fluorescence background removal and normalization) recovered/smoothed from 
low-SNR Raman measurements using SG algorithm, FIR filtration, wavelet transform, 

factor analysis and WE method 

 SG algorithm FIR filtration Wavelet 
transform 

Factor 
analysis 

WE method 

Mean relative 
RMSE 1.47 × 10−1 1.54 × 10−1 1.45 × 10−1 1.48 × 10−1 8.21 × 10−2 

Table 2 shows the comparison in the mean relative RMSE of Raman spectra (after 
fluorescence background removal and normalization) from bacteria samples recovered using 
SG algorithm, FIR filtration, wavelet transform, factor analysis and WE method. The mean 
relative RMSE for WE method is 55.9%, 53.3%, 56.6%, 55.5% those of SG algorithm, FIR 
filtration, wavelet transform and factor analysis, respectively. Figure 4 shows the comparison 
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of the reference Raman spectra and the corresponding spectra recovered/smoothed using SG 
algorithm, FIR filtration, wavelet transform, factor analysis and WE method, in which the 
relative RMSE is close to the mean value. 

	

	

(a) (b) 

(c) 

(e)

(d) 

 

Fig. 4. Comparison of the reference Raman spectra from bacteria samples and the Raman 
spectra recovered from low-SNR Raman measurements using (a) SG algorithm, (b) FIR 
filtration method, (c) wavelet transform, (d) factor analysis and (e) WE method, in which the 
relative RMSE is close to the mean value. Fluorescence background has been removed and 
spectra have been normalized. 

Table 3. Comparison in the mean relative RMSE of Raman spectra of phantoms (after 
normalization but without background removal) recovered/smoothed from low-SNR 
Raman measurements using SG algorithm, FIR filtration, wavelet transform, factor 

analysis and WE method 

 SG algorithm FIR filtration 
Wavelet 

transform 
Factor 

analysis 
WE method 

Mean relative 
RMSE 8.83 × 10−2 8.81 × 10−2 8.83 × 10−2 8.79 × 10−2 2.05 × 10−2 

In order to clearly see whether the background removal process influences the results, the 
mean relative RMSE of recovered/smoothed Raman spectra (after normalization but without 
background removal), using SG algorithm, FIR filtration, wavelet transform, factor analysis 
and WE method, were compared as shown in Table 3. The mean relative RMSE for WE 
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method is 23.2%, 23.3%, 23.2%, 23.3% those of SG algorithm, FIR filtration, wavelet 
transform and factor analysis, respectively. Table 4 shows the comparison in the mean 
relative RMSE of Raman spectra from bacteria samples (after normalization but without 
background removal) recovered using SG algorithm, FIR filtration, wavelet transform, factor 
analysis and WE method. The mean relative RMSE for WE method is 63.3%, 57.8%, 62.9%, 
45.0% those of SG algorithm, FIR filtration, wavelet transform and factor analysis, 
respectively. In both Tables 3 and 4, WE method shows significant improvement compared 
with other techniques. Therefore, WE method shows much better performance on the raw 
Raman measurements as well when fluorescence background is not removed. 

Table 4. Comparison in the mean relative RMSE of Raman spectra of bacteria samples 
(after normalization but without background removal) recovered/smoothed from low-

SNR Raman measurements using SG algorithm, FIR filtration, wavelet transform, factor 
analysis and WE method 

 SG algorithm FIR filtration 
Wavelet 

transform 
Factor 

analysis 
WE method 

Mean relative 
RMSE 1.58 × 10−2 1.73 × 10−2 1.59 × 10−2 2.22 × 10−2 1.00 × 10−2 

4. Discussion 

Results from phantom samples as in Fig. 3 show that the agreement in peak locations between 
reference Raman spectra and Raman spectra recovered from low-SNR Raman measurements 
using WE method as shown in Fig. 3(e) is excellent and spectral shape information is mostly 
preserved. In Raman spectra recovered using SG algorithm as shown in Fig. 3(a), peak 
locations are distorted and spectral shape information is lost, because those weak Raman 
features in spectra with extremely low SNR can be easily smoothed out. FIR method, as 
shown in Fig. 3(b), fails to distinguish Raman peaks from noise due to the large variance of 
the noise, thus it shows poor performance in the recovery of the peak locations and spectral 
shape. Wavelet transform, as shown in Fig. 3(c), shows good performance in noise removal, 
but important spectral shape information such as the central wavelengths and bandwidths of 
peaks is lost. The Raman spectra recovered using factor analysis are still noisy, as shown in 
Fig. 3(d), which suggests this method does not work well in this case. This is likely because 
the signal and the noise have comparable contributions to the measured Raman spectra. 

Results from bacteria samples in Fig. 4 show that the agreement in the locations of those 
peaks with relatively high intensity between reference Raman spectra and Raman spectra 
recovered from low-SNR Raman measurements using WE method as shown in Fig. 4(e) is 
excellent and the spectral shape information is mostly preserved. However, several small 
peaks are not recovered well, which is not as good as in the recovery of phantom spectra. This 
is because the Raman signals of bacteria samples are much weaker than those in phantoms. 
Compared with WE method as shown in Fig. 4(e), the SG algorithm, FIR filtration and 
wavelet transform, illustrated in Figs. 4(a)-4(c), show much worse results, in which most peak 
locations are shifted and spectral shape is distorted. The Raman spectra recovered using factor 
analysis as shown in Fig. 4(d) are still noisy, which suggests this method does not work well 
in terms of noise removal. 

In Fig. 3 and 4, it can be found that the reference spectrum is different for each noise 
reduction technique. The reason for such a difference in the reference spectra is explained as 
follows. The test results on a single phantom or bacteria sample was inadequate to represent 
the performance for all techniques because each technique gives different performance on 
various phantoms or bacteria samples. To avoid this issue, 25 phantoms and 20 bacteria 
samples were used and the mean relative RMSE was used to evaluate the overall performance 
of those techniques. In this sense, the typical cases, i.e. the relative RMSE close to the mean 
relative RMSE, can effectively represent the performance of different techniques. However, it 
is impossible to find a phantom or bacteria sample that was the typical case for all five 
different techniques, because each technique showed different performance on the same 
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phantom or bacteria. Therefore, five different phantoms or bacteria samples were selected, in 
which one represented the typical case for each technique. 

For bacteria samples, we have tested the recovery of Raman spectra from two other sets of 
low-SNR measurements with exposure times of 5 s and 10 s in addition to an exposure time 
of 1 s. The SNRs are 2.09 and 2.87 for low-SNR measurements with exposure times of 5 s 
and 10 s, respectively. Table 5 shows the comparison in the mean relative RMSE of Raman 
spectra of bacteria samples (after fluorescence background removal and normalization) 
recovered from low-SNR Raman measurements (acquired with different exposure time) using 
SG algorithm, FIR filtration, wavelet transform, factor analysis and WE method. With an 
increasing exposure time, all methods, i.e. SG algorithm, FIR method, wavelet transform, 
factor analysis and WE method, yield better performance. WE method always yields the best 
result among the five methods, while SG algorithm, FIR filtration, wavelet transform and 
factor analysis show performance similar to each other but considerably worse than WE 
method. 

Table 5. Comparison in the mean relative RMSE of Raman spectra of bacteria samples 
(after fluorescence background removal and normalization) recovered from low-SNR 

Raman measurements with different exposure time using SG algorithm, FIR filtration, 
wavelet transform, factor analysis and WE method 

Exposure time 
SG algorithm 

relative RMSE 
FIR filtration 

relative RMSE 

Wavelet 
transform 

relative RMSE 

Factor analysis 
relative RMSE 

WE method 
relative RMSE 

1 s 1.47 × 10−1 1.54 × 10−1 1.45 × 10−1 1.48 × 10−1 8.21 × 10−2 

5 s 9.78 × 10−2 9.94 × 10−2 9.67 × 10−2 1.10 × 10−1 7.08 × 10−2 

10 s 8.56 × 10−2 8.67 × 10−2 8.33 × 10−2 1.01 × 10−1 6.55 × 10−2 

The excellent performance of WE method can be attributed to two factors. One factor is 
that the synthesis of narrow-band measurements from low-SNR Raman spectra, in which 
Raman signals are integrated in the wavenumber dimension thus improving the SNR in 
narrow-band measurements. This works because shot noise dominates in typical Raman 
measurements [26, 27]. A similar strategy, i.e. integration of Raman signals over time or 
using a long exposure time in data acquisition, is used more often in practice [28]. The other 
factor is that WE method takes advantage of prior information about samples contained in 
Wiener matrix. Note that Wiener matrix is created in the calibration stage, in which Raman 
spectra with high SNR measured from similar samples are used and associated with narrow-
band measurements. Unfortunately, the second factor is also responsible for the limitation of 
WE method, i.e. the Wiener matrix has to be derived from Raman spectra with high SNR 
measured from similar samples in the calibration stage prior to spectral recovery from low-
SNR measurements. It would work better if the spectral variation across samples is smaller. 
For this reason, WE method would not work well if the calibration data set is very different 
from the test data set or when it is impossible to obtain the calibration data set. However, it 
should be pointed out that the calibration data set is often available in most biomedical 
applications. This fact has been utilized in many earlier researches in medical diagnostics [29, 
30] thus not a problem in these applications. 

Compared with other advanced methods, the advantages of our method include its 
simplicity, short processing time and excellent performance. The iterative three-point zero-
order SG filter method [31] is a fully automatic noise reduction method based on SG 
smoothing. Compared with this method, our method is simpler since it does not need iteration 
thus would be faster. In addition, our method always shows significant improvement in 
spectral shape preservation compared with SG filters based methods. For example, the 
iterative SG method always shows the peak height reduction problem while the method based 
on Wiener estimation shows much better performance on peak preservation in Fig. 3 and 4 of 
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the manuscript. Other advanced noise reduction methods based on regularization, e.g. Chi-
squared based filters method [32] and matrix-based two dimensional regularization algorithm 
[33], are more complex and more time consuming than the proposed method due to the 
iterations required to satisfy the stop criterion. In contrast, our method requires a calibration 
data set, but the calibration data set is not needed in the test stage for data processing once the 
Wiener matrix is created, which not only takes advantage the prior information contained in 
the calibration data set but also accelerates data processing dramatically. 

5. Conclusions 

In this study, we develop a method based on spectral reconstruction to recover Raman spectra 
with low signal-to-noise ratio (SNR). Wiener estimation is used in this method to recover the 
high-SNR Raman spectra from narrow-band measurements that are synthesized from low-
SNR Raman spectra. The synthesis of narrow-band measurements from low-SNR Raman 
spectra eliminates the effect of noise by integrating the Raman signal along the wavenumber 
dimension, which is followed by spectral reconstruction based on Wiener estimation to 
recover the Raman spectrum with high spectral resolution. Non-negative principal 
components based filters are used in the synthesis to ensure that most variance contained in 
the original Raman measurements are retained. The method was evaluated on 25 Raman 
measurements from agar phantoms and 20 Raman measurements from bacteria samples. The 
agreement in peak locations between reference Raman spectra and Raman spectra recovered 
using WE (Wiener estimation) method was excellent and spectral shape information was 
mostly preserved. The relative mean root mean square errors (RMSEs) in cases of both with 
and without fluorescence background removal were small. In contrast, four commonly used 
de-noising methods, i.e. SG (Savitzky-Golay) method, FIR (finite impulse response) 
filtration, wavelet transform and factor analysis, showed significantly worse performance. 
Therefore, WE method represents a new alternative method for noise removal in those 
applications where short data acquisition yields Raman spectra with low SNR but creating a 
calibration data set is feasible. 
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